About networkingnerd

Tom Hollingsworth, CCIE #29213, is a former network engineer and current organizer for Tech Field Day. Tom has been in the IT industry since 2002, and has been a nerd since he first drew breath.

Penny Pinching With Open Source

You might have seen this Register article this week which summarized a Future:Net talk from Peyton Koran. In the article and the talk, Peyton talks about how the network vendor and reseller market has trapped organizations into a needless cycle of bad hardware and buggy software. He suggests that organizations should focus on their new “core competency” of software development and run whitebox or merchant hardware on top of open source networking stacks. He says that developers can use code that has a lot of community contributions and shares useful functionality. It’s a high and mighty goal. However, I think the open source part of the equation is going to cause some issues.

A Penny For Your Thoughts

The idea behind open source isn’t that hard to comprehend. Everything available to see and build. Anyone can contribute and give back to the project and make the world a better place. At least, that’s the theory. Reality is sometimes a bit different.

Many times, I’ve had off-the-record conversations with organizations that are consuming open source resources and projects as a starting point for building something that will end up containing many proprietary resources. When I ask them about contributing back to those projects or finding ways to advance things, the response are usually silence. Very rarely, I hear that the organization sees their proprietary developments as a “competitive advantage” that they are going to use to either beat a competitor or build a product that saves them a significant amount of money.

The analogy I like to use for open source is the “Take A Penny” dish that many businesses have next to their cash register. The idea is that people can contribute something small to help out others. If someone needs a penny or two to help make payment for a good or service, they can take one. If they have a few left over they can give back. It’s a way to give back a little now and then.

However, there are a couple of types of people that skew the trend for the penny dish. The first is the person that gives back much more than the norm. That person might put a quarter in the dish or put in four or five pennies at every dish they find. They contribute above the norm often and give a lot. The second type of person takes quite a few pennies from the dish and never gives back. They may see the dish as “free money” to be used to augment their own. They don’t care if all the pennies are gone when they finish just as long as they got what they needed out of it.

Extend this metaphor into the open source community. There are quite a few contributors that put in significant time and effort in their projects. They may have found a way to do it full time or may be paid by their company to participate in projects. These folks are dedicated to the cause.

On the other side of the metaphor are the people and organizations that take what they want from open source and never give back. They never contribute to the project, even if their enhancements are needed and welcome. They take a free or inexpensive starting point and use it to build a product that could be used internally to give the organization an advantage. The key here is that it’s something used internally. The GPL covers distribution of software that is based on GPL code, but it’s not really clear about what happens if that software is consumed internally. An enterprising developer may say to themselves, “As long as I don’t sell it, I don’t have to give my code back.”

Networking For Pocket Change

There are quite a few open source networking projects out there. Quagga, BiRD, and Open vSwitch are great examples of projects that have significant reach and are used by a lot of companies to build great products. However, imagine what would happen if no one gave back to these projects. Imagine what would happen if contributors decided to make their own BGP daemons or OVS-like program and use it without regard for helping others in the community.

Open source software needs developers willing to contribute back to the project. If networking is going to embrace open source projects as Peyton suggested in his talk, it’s going to take a lot more contribution than quiet consumption. Whether or not you agree with the premise that networking vendors are corrupt and evil you do have to concede that they’ve given us mostly stable protocols like BGP and OSPF. These same vendors have contributed ideas back to the standardization process to improve protocols like spanning tree and power over Ethernet. Their contributions helped shape what networking is today.

If the next generation of software based network developers wants to embrace and extend these contributions with open source, they’re going to need to be transparent and communicate with the project leads. They’re also going to need to push back when someone high up the food chain sees the development process as a way to gain an advantage and try and keep it all secretive. If developers aren’t going to give back to the community it negates the advantages of open source and instead takes us back to the days of networks being one-off creations that have no interoperability beyond a few protocols. Islands in a sea of home-grown lava.


Tom’s Take

As anyone that attended Future:Net within earshot of me can attest, I wasn’t overly thrilled with Peyton’s take on the future of networking. I have some deep seeded reservations about the “screw the vendors, build it all yourself” mentality that is pervading organizations today. Not everyone is a development shop. Law firms and schools don’t employ software engineers regularly. If you want to transform those types of users into open source adherents, you need to lead the pack by giving back and talking about what your doing with open source. If you’re not willing to lead the way, stop telling people to take the fork in the road.

Advertisements

Network Longevity – Think Car, Not iPhone

One of the many takeaways I got from Future:Net last week was the desire for networks to do more. The presenters were talking about their hypothesized networks being able to make intelligent decisions based on intent and other factors. I say “hypothesized” because almost everyone admitted that we aren’t quite there. Yet. But the more I thought about it, the more I realized that perhaps the timeline for these mythical networks is a bit skewed in favor of refresh cycles that are shorter than we expect.

Software Eats The World

SDN has changed the way we look at things. Yes, it’s a lot of hype. Yes, it’s an overloaded term. But it’s also the promise of getting devices to do much more than we had ever dreamed. It’s about automation and programmability and, now, deriving intent from plain language. It’s everything we could ever want a simple box of ASICs to do for us and more.

But why are we asking so much? Why do we now believe that the network is capable of so much more than it was just five years ago? Is it because we’ve developed a revolutionary new method for making chips that are ten times smarter and a hundred times faster? No. In fact, the opposite is true. Chips are a little faster and a little cheaper, but they aren’t custom construction. Most companies are embracing merchant silicon from companies like Broadcom and Mellanox. So, where’s all this functionality coming from?

Its’ the “S” in SDN. We’re seeing software driving this development. Yes, it’s the same thing we’ve been saying for years now. But it’s something more now. Admins and engineers aren’t just excited that network devices are more software now. They’re expecting it. They’re looking to the software to drive the development. Gone are the days of CLI-only access. Now, the interfaces are practically built on API-driven capabilities. The Aruba 8400 seems like it was built for the API first, with the GUI being a superset of API functions. People getting into the networking world are focusing on things like Python first and CLI syntax second. Software is winning again.

It’s like the iPhone revolution. The hardware is completely divorced from the software. I can upgrade to the latest version of Apple’s iOS and get most of the functionality I want in the OS. Aside from some hardware specific things the majority of the functions work no matter what. Every year, I get new toys to play with. Every 12 months I can enable new functions and have new avenues available to me. If you think back to the first iterations of the iPhone ten years ago, you can see how far software development has driven this device.

Hardware For The Long Haul

However, for all the grandeur and amazement that iPhone (and Android for that matter) show, it’s also created a side effect that is causing even more problems in the mobile device world that is bleeding over into other electronics. That is the rapid replacement cycle. I mentioned above how awesome it is that you can get new functions every year in your mobile device. But I didn’t mention how people are already looking forward to the newest hardware even though they may have purchased a new phone just 10 months ago.

The desire to get faster by leaps and bounds every year is almost comical at this point. When the new device is delivered an it’s just a bit faster than the last, people are disappointed. Even I was guilty of this when I moved from a 2013 MacBook to a 2016 model. It was only 20% faster. Even with everything else I got in the new package, I found myself chasing performance over every other feature.

The desire to get better performance isn’t just limited to phones and tablets and laptops. When network designers look to increase network performance, they want to do so in a way that makes their users happy. Gone are the days when a simple gigabit network connection would keep someone pleased. We now have to develop gigabit wireless connections to the backbone network, where data is passed to servers connected by 25Gig connections to spines and super spines running at 100Gig (for now). In some cases, that data doesn’t even move any more, and instead short-lived containers are spun up next to it to make things run faster.

Networks aren’t designed like iPhones. They aren’t built to be ripped out every year and replaced with something a little faster and a little shinier. They’re designed more like cars in that regard. They are large purchases that should last for years upon years, with their performance profile dictated by the design at the time. We’ve gone through the phases of running 10Mbit hubs. We upgraded to FastEthernet. We’re now living in a cycle where Gigabit and 10/40 Gigabit switches are ruling the roost. Some of the more forward-thinking folks are adopting 25/50Gigabit and even looking to faster technologies like 400Gig connections for spines.

However, the longevity of hardware remains. Capital expenditure isn’t the easiest thing in the world to accomplish. You need to budget for new devices in the networking world. You need to justify cost savings or new applications. You can’t just buy a fast new switch or two every year and claim that it makes everything better without some kind of justification. Even if you move to the cloud with your strategy, you’re not changing the purchasing model. You’re just trading capital expenditure to operational expenditure. You’re leasing a car instead of buying it. Because if you leave the cloud, you’re back to your old switching model with nothing to show for it.


Tom’s Take

I was pretty hard on the Future:Net presenters because I felt that their talk of ditching money grubbing vendors for the purity of whitebox switching running open source software was a bit heavy handed. Most organizations are in the middle of a refresh cycle and can’t afford to rip everything out and replace it today. Moreover, the value in whitebox switching isn’t realized when you install new hardware. It’s realized when you turn your switch into an iPhone. Where software development rules the day and your hardware fades away in the background. We’re not there yet. We’re still buying hardware for the sake of hardware as the software is catching up. Networking equipment is still built and bought like a car and will be for a few years to come. Maybe we can revisit this topic in 3 years and see how far software will have driven us by then.

Resource Contention In IT – Time Is Never Enough

I’m at Future:NET this week and there’s a lot of talk about the future of what networking is going to look like from the perspective of vendors like Apstra, Veriflow, and Forward Networks. There’s also a great deal of discussion from customers and end users as well. One of the things that I think is being missed in all the talk about resources.

Time Is Not On Your Side

Many of the presenters, like Truman Boyes of Bloomberg and Peyton Maynard-Koran of EA, discussed the idea of building boxes from existing components instead of buying them from established networking vendors like Cisco and Arista. The argument does hold some valid ideas. If you can get your hardware from someone like EdgeCore or Accton and get your software from someone else like Pluribus Networks or Pica8 it looks like a slam dunk. You get 90% to 95% of a solution that you could get from Cisco with much less cost to you overall.

Companies like Facebook and Google have really pioneered this solution. Facebook’s OCP movement is really helping networking professionals understand the development that goes into building their own switches. Facebook’s commitment is also helping reduce the price of the components when an eager person wants to go build an OCP switch from parts they find at Radio Shack or from Amazon.

But, for Facebook, the development of a switch like this or the development of a platform is a sunk cost. Because the important resource to Facebook isn’t time. Facebook has teams of engineers sitting around developing things. For them, the time the least important resource. Time is something they have in abundance. Why is that? Because their development is entirely focused on their product. Google can afford to have 500 people working on a product with an IT focus like Google Reader or Google Wave because that’s what Google hires people to do.

Contrast that with the typical IT department at an enterprise. Even with thousands of users in Marketing, Management, and Finance there are usually only a handful of IT professionals. And those people have to cover storage, compute, networking, wireless, and software. The focus of the average law firm is not using IT resources to create a product. The focus of the business is leveraging IT to provide a service. A finance firm doesn’t have the time resources to commit to developing in-house solutions or creating IT hardware from components and freely available software.

Money, Money, Money.

Let’s look at the other side of the coin. Facebook and Google have oodles and oodles of time to build and develop things. They can get their developers to work together to build the hardware and software to integrate at a deep level. And because they understand it at that level, they can easily debug it instead of asking someone to solve their problem. What Facebook and Google don’t have is money.

To large firms like these, money is more important than time. When you have to purchase networking or storage equipment by the thousands or tens of thousands of units money becomes a huge issue. If you can save a few dollars per switch that can translate to huge savings in the long run. Even Facebook is doing this with OCP. By creating a demand for specific components for these devices, they can drive costs down across the board and save money for them. For Facebook, money is what is tracked for creating their infrastructure. The more that is saved, the more they can do with it.

In the enterprise, money isn’t quite as important as time. Money is important to businesses for sure. You don’t keep the lights on if you aren’t making money. But because IT supports the business and isn’t the entire business, money can be more easily allocated to projects from budgets. There are pools of money that can be used to purchase office furniture, catering services, or IT hardware. These resources can be reallocated efficiently like Facebook allocates time for projects. If the storage array needs to be upgraded or the wireless needs to be refreshed there can be discussions about how to accomplish it. Maybe the CEO doesn’t get a new desk this quarter. Or maybe there needs to be a few new sales discussions to create capital. But money isn’t as valuable as time. If you think I’m crazy try to get 10 minutes on a CEO’s calendar. Versus getting him to sign off on a purchase.

That’s the real value of cloud computing for IT professionals. They aren’t paying for scale or for availability. They’re really paying for time. They’re paying for a process that reduces the amount of time that they spend configuring low level tasks that are menial and time consuming. Building systems takes time. Automation reduces the time it takes. Process reduces it even further. So organizations looking to move to the cloud are essentially trading one resource, money, for a more important resource, time. Likewise, the large cloud providers that are building these systems are trading their resource, time, for a more valuable resource, money.


Tom’s Take

I don’t believe that smaller enterprises will ever truly embrace the idea of building their own OCP switches running custom Linux distros and custom built routing processes. Because to them, time is way too important. Time to focus on the business. Time to focus on supporting the way that the money is made. Time to do more. Likewise, I expect that large enterprises and providers like Facebook will continue to push the envelope of development and create new solutions. Because they have the time to play and test and build. And use those skills to make money. But I never see a world where those two places meet. Because resource contention is different between these two groups and it causes different outcomes. And the value of those resources are unlikely to change without massive disruption.

The Complexity Of Choice

Russ White had an interesting post this week about the illusion of choices and how herd mentality is driving everything from cell phones to network engineering and design. I understand where Russ is coming from with his points, but I also think that Russ has some underlying assumptions in his article that ignore some of the complexity that we don’t always get to see in the world. Especially when it comes to the herd.

Collapse Into Now

Russ talks about needing to get a new mobile phone. He talks about how there are only really two choices left in the marketplace and how he really doesn’t want either of them. While I applaud Russ and his decision to stand up for his principals, there are more than two choices. He could easily purchase a used Windows mobile phone from eBay. He could choose to run a Palm Tree 650 or a Motorola RAZR from 2005. He could even choose not to carry a phone.

You’re probably saying, “That’s not a fair comparison. He needs feature X on his phone, so he can’t use phone Y.”

And you would be right! So right, in fact, that you’ve already missed one of the complexities behind making choices. We create artificial barriers to reduce the complexity of options because we have needs to meet. We eliminate chaos when making decisions by creating order to limit our available pool of resources.

Let’s return to the mobile phone argument for a moment. Obviously, not having a phone is not an option. But what does Russ need on his phone that pushed him to the iPhone? I’m assuming he needs more than just voice calling capability. That means he can’t use a Jitterbug even though it’s a very serviceable phone for the user base that wants that specific function set. I’m also sure he needs a web browser capable of supporting modern web designs. Perhaps it’s a real keyboard and not T9 predictive text for everything you could want to type. That eliminates the RAZR from contention.

What we’re left with when we develop criteria to limit choices is not two things we feel very ambivalent about. It’s actually the resulting set of operations on chaos to provide order. Android and iPhone don’t strongly resemble each other because of coincidence. It’s because the resulting set of decision making by consumers has led them to this point. Windows Mobile also suspiciously looks like Android/iOS for the same reason. If the mobile OS on Russ’s phone looked more like Windows Mobile 5.0 instead, I’m sure his reasons for not choosing iOS or Android would have been much stronger.

Automatic For The People

So, why is it in networking and mobile phones and even extra value meals that we find our choices “eliminated” so frequently? How is it that we have the illusion of choice without many real choices at all? As it turns out, the illusion is there not to reinforce our propensity to make choices, but instead to narrow our list of possibly choices to something greater than the set of Everything In The World.

Let’s take a hamburger for instance. If you want a hamburger, you will probably go to a place that makes them. You’ve already made a lot of choices in just that one decision, but let’s move past the basic choices. What is your hamburger going to look like? One meat patty? Three? Will it have a special kind of sauce? Will it be round? Square? Four inches thick? These are all unconscious choices that we make. Sometimes, we don’t make these choices by eliminating every option. Instead, we make them by choosing a location and analyzing the options available there. If I pick McDonald’s as my hamburger location because of another factor, like location or time, then I’ve artificially limited my choices to what’s available at McDonald’s at that moment. I can’t get a square hamburger with extra bacon. Not because it’s unfair that McDonald’s doesn’t offer that option. But because I made my choice about available options before I ever got to that point. The available set of my choices will include round meat patties and American cheese. If I want something different, I need to pick a different restaurant, not demand McDonald’s give me more choices.

Artificially limiting choices for people making decisions sometimes isn’t about resource availability. It’s about product creation. It’s about assembly and complexity in making devices. It’s about what people make important in their decision making process. Let’s take a pretty well-known example:

On the left is the way cell phones were designed before 2007. Every one of them looks interesting in some way. Some had keyboards. Some had flip options. Some had pink cases or external antennas. Now, look at the cluster on the right. They all look identical. They all look like Apple Mobile Phone Device that debuted in 2007. Why? Because customers were making a choice based on form factor that informed the rest of their choices. In 2008, if you wanted a mobile device that was a black rectangle with a multi-touch screen and a software keyboard, your options were pretty limited. Now, I challenge you to find a phone that doesn’t have those options. It’s like trying to find a car without power windows. They do exist, but you have to make some very specific choices to find one.


Tom’s Take

Some choices are going to be made for us before we ever make our first decision. We can’t buy networking switches at McDonald’s. We can’t eat our mobile phones. But what we can do to give ourselves more choices is realize that the trade off for that is expending energy. We must do more to find alternatives that meet our requirements. We have to “think outside the box”, whether that means finding a used device we really like somewhere or rolling our own Linux distribution from Slackware instead of taking the default Ubuntu installation. It means that we’re going to have to make an effort to include more choices instead of making choices that automatically exclude certain options. And after you’ve done that for more than a few things, you will realize that the illusion of few choices isn’t really an illusion, but a mask that helps you preserve your energy for other things.

Automating Documentation

Tedium is the enemy of productivity. The fastest way for a task to not be done is to make it long, boring, and somewhat complicated. People who feel that something is tedious or repetitive are the ones more likely to marginalize a task. And I think I speak for the entire industry when I say that there is no task more tedious and boring than documentation. So how can we fix it?

Tell Me What You Did

I’m not a huge fan of documentation. When I decide on a plan of action, I rarely write it down step-by-step unless I’m trying to train someone. Even then, it looks more like notes with keywords instead of a narrative to follow. It’s a habit that has been borne out of years of firefighting in networks and calls to “do it faster”. The essential items of a task are refined and reduced until all that remains is the work and none of the ancillary items, like documentation.

Based on my previous life as a network engineer, I can honestly say that I’m not alone in this either. My old company made lots of money doing network discovery engagements. Sometimes these came because the previous admins walked out the door with no documentation. Other times, it was simply because the network had changed so much since the last person made any notes that what was going on didn’t resemble anything like what they thought it was supposed to look like.

This happens everywhere. It doesn’t take many instances of an network or systems professional telling themselves, “Oh, I’ll write it down later…” for later to never come. Devices get added, settings get changed, and not one word is ever written down. That’s the kind of chaos that causes disorganization at best and outages at worst. And I doubt there’s any networking pro out there that hasn’t been affected by bad documentation at one time or another.

So, how do we fix documentation? It’s tedious for sure. Requiring it as part of the process just invites people to find ways around it. And good documentation takes time. Is there a way to combine the lack of time, lack of requirement, and repetition and make documentation something that is done again? I think there is. And it requires a little help from process.

Not Too Late To Automate

Automation is a big thing right now. SDN is driving it. Network complexity is practically requiring it. Yet networking professionals are having a hard time embracing it. Why?

In part, networking pros don’t like to spend hours solving a problem that can be done in minutes. If you don’t believe me, watch one of the old SNL Nick Burns sketches. Nick is more likely to tell you to move than tell you how to fix your problem. Likewise, if a network pro is spending four hours writing an automation script that is supposed to execute a change that can be made in 20 minutes, they’re not going to want to do it. It’s just the nature of the job and the desire of the network professional to make every minute count.

So, how can we drive adoption of automation? As it turns out, automating documentation can be a huge driver. Automation of tedious tasks is exactly the thing that scripting and automation was designed to solve. Instead of focusing on the automation of the task, like adding VLANs to a set of switches, focus on the ability of the system to create documentation on the fly from the change.

Let’s walk through an example. In order for documentation to matter, it has to answer the 5 Ws. How can we automate that?

Let’s start with Who. Automation can create documentation saying user Hollingsworth made a change through an automated process. That helps the accounting side of the house figure out the person making changes in the network. If that person is actually a script, the Who can be changed to reflect that it was an automated process called by a person related to a change ticket. That gives everyone the ability to track the changes back to a given problem. And it can all be pulled in without user intervention.

What is also an easy automation task. List the configuration being applied. At first, the system can simply list the configuration to be programmed. But for menial and repetitive tasks like VLAN additions you can program the system with a real description like “Adding VLANs to $Switch to support $ticket”. Those variables can be autopopulated based on the work to be done. Again, we reference a ticket number in order to prove that these changes are coming from somewhere.

When is also critical. Are these changes happening in a maintenance window? Or did someone check them in in the middle of the day because they won’t cause any problems? (SPOILER ALERT: They will) By required a timestamp for changes, you can track which professionals are being cavalier with their change management. You can also find out if someone is getting into the system after hours to cause problems or attempt to compromise things. Even if the cause of the change is “immediately” due to downtime or emergency, knowing why it had to be checked in right away is a clue to finding problems that recur in the network.

Where is a two-pronged reason. It’s important to check where the changes are going to be applied. Is it going to be done to all switches in the organization? Or just a set in a remote office. Sanity checking via documentation will keep you from bricking your entire organization in one fell swoop. Likewise, knowing where the change is being checked in from is important. Is a remote office trying to change config on HQ switches? Is a remote engineer dialed in making changes related to an open support case? Is someone from a foreign nation making changes via VPN at 4:30am local time? In every case, you’d really want to know what’s going on before those changes get made.

Why is the one that will trip up everything. If you don’t believe me, I’d like to give you the top two reasons why Windows Server 2003 is shut down and rebooted with the shutdown justification dialog box:

  1. a;lkdjfalkdflasdfkjadlf;kja;d
  2. JUST ****ing SHUT DOWN!!!!!

People don’t like justifying their decisions. Even when I worked for Gateway 2000 on their national help desk, our required call documentation was a bit spotty when it came to justification for changes. Why did you decide to FDISK and reload? Why are you going into the registry to fix the icon colors? Change justification is half of documentation. It gives people something to audit. It gives people a way to look at things and figure out why you started down the path of a particular reasoning for problem solving. It also provides context for you after the fact when you can’t figure out why you did it the way you did.


Tom’s Take

Automation isn’t going to take away your job. Automation is going to do the jobs you hate doing. It’s going to make your life easier to concentrate on the tasks that need to be done by freeing you from the tasks that should be done and aren’t. If we can make automation document our networks for just six months, I think you’ll find the value in programming things to work this way. I also think you’ll be happier with the level of detail on your network. And once you can prove the value of automating just one task to your teams, I’m sure they’ll see the value of increasing automation all around.

Virtual Reality and Skeuomorphism

Remember skeuomorphism? It’s the idea that the user interface of a program needs to resemble a physical a physical device to help people understand how to use it. Skeuomorphism is not just a software thing, however. Things like faux wooden panels on cars and molded clay rivets on pottery are great examples of physical skeuomorphism. However, most people will recall the way that Apple used skeuomorphism in the iOS when they hear the term.

Scott Forrestal was the genius behind the skeuomorphism in iOS for many years. Things like adding a fake leather header to the Contacts app, the wooden shelves in the iBooks library, and the green felt background in the Game Center app are the examples that stand out the most. Forrestal used skeuomorphism to help users understand how to use apps on the new platform. Users needed to be “trained” to touch the right tap targets or to feel more familiar with an app on sight.

Skeuomorphism worked quite well in iOS for many years. However, when Jonny Ive took over as the lead iOS developer, he started phasing out skeuomorphism starting in iOS 7. With the advent of flat design, people didn’t want fake leather and felt any longer. They wanted vibrant colors and integrated designs. As Apple (and others) felt that users had been “trained” well enough, the decision was made to overhaul the interface. However, skeuomorphism is poised to make a huge comeback.

Virtual Fake Reality

The place where skeuomorphism is about to become huge again is in the world of virtual reality (VR) and augmented reality (AR). VR apps aren’t just limited to games. As companies start experimenting with AR and VR, we’re starting to see things emerge that are changing the way we think about the use of these technologies. Whether it be something as simple as using the camera on your phone combined with AR to measure the length of a rug or using VR combined with a machinery diagram to teach someone how to replace a broken part without the need to send an expensive technician.

Look again at the video above of the AR measuring app. It’s very simple, but it also displays a use of skeuomorphism. Instead of making the virtual measuring tape a simple arrow with a counter to keep track of the distance, it’s a yellow box with numbers printed every inch. Just like the physical tape measure that it is displayed beside. It’s a training method used to help people become acclimated to a new idea by referencing a familiar object. Even though a counter with tenths of an inch would be more accurate, the developer chose to help the user with the visualization.

Let’s move this idea along further. Think of a more robust VR app that uses a combination of eye tracking and hand motions to give access to various apps. We can easily point to what we want with hand tracking or some kind of pointing device in our dominant hand. But what if we want to type? The system can be programmed to respond if the user places their hands palms down 4 inches apart. That’s easy to code. But how to do tell the user that they’re ready to type? The best way is to paint a virtual keyboard on the screen, complete with the user’s preferred key layout and language. It triggers the user to know that they can type in this area.

How about adjusting something like a volume level? Perhaps the app is coded to increase and reduce volume if the hand is held with fingers extended and the wrist rotated left or right. How would the system indicate this to the user? With a circular knob that can be grasped and manipulated. The ideas behind these applications for VR training are only limited by the designers.


Tom’s Take

VR is going to lean heavily on skeuomorphism for many years to come. It’s one thing to make a 2D user interface resemble an amplifier or a game table. But when it comes to recreating constructs in 3D space, you’re going to need to train users heavily to help them understand the concepts in use. Creating lookalike objects to allow users to interact in familiar ways will go a long way to helping them understand how VR works as well as helping the programmers behind the system build a user experience that eases VR adoption. Perhaps my kids or my grandkids will have VR and AR systems that are less skeuomorphic, but until then I’m more than happy to fiddle with virtual knobs if it means that VR adoption will grow more quickly.

It’s Probably Not The Wi-Fi

After finishing up Mobility Field Day last week, I got a chance to reflect on a lot of the information that was shared with the delegates. Much of the work in wireless now is focused on analytics. Companies like Cape Networks and Nyansa are trying to provide a holistic look at every part of the network infrastructure to help professionals figure out why their might be issues occurring for users. And over and over again, the resound cry that I heard was “It’s Not The Wi-Fi”

Building A Better Access Layer

Most of wireless is focused on the design of the physical layer. If you talk to any professional and ask them to show your their tool kit, they will likely pull out a whole array of mobile testing devices, USB network adapters, and diagramming software that would make AutoCAD jealous. All of these tools focus on the most important part of the equation for wireless professionals – the air. When the physical radio spectrum isn’t working users will complain about it. Wireless pros leap into action with their tools to figure out where the fault is. Either that, or they are very focused on providing the right design from the beginning with the tools validating that access point placement is correct and coverage overlap provides redundancy without interference.

These aren’t easy problems to solve. That’s why wireless folks get paid the big bucks to build it right or fix it after it was built wrong. Wired networkers don’t need to worry about microwave ovens or water pipes. Aside from the errant fluorescent light or overly aggressive pair of cable pliers, wired networks are generally free from the kinds of problems that can plague a wire-free access layer.

However, the better question that should be asked is how the users know it’s the wireless network that’s behind the faults? To the users, the system is in one of three states: perfect, horribly broken, or slow. I think we can all agree that the first state of perfection almost never actually exists in reality. It might exist shortly after installation when user load is low and actual application use is negligible. However, users are usually living in one of the latter states. Either the wireless is “slow” or it’s horribly broken. Why?

No-Service Station

As it turns out, thanks to some of the reporting from companies like Cape and Nyansa, it turns out that a large majority of the so-called wireless issues are in fact not wireless related at all. Those designs that wireless pros spend so much time fretting over are removed from the equation. Instead, the issues are with services.

Yes, those pesky network services. The ones like DNS or DHCP that seem invisible until they break. Or those services that we pay hefty sums to every month like Amazon or Microsoft Azure. The same issues that plague wired networking exist in the wireless world as well and seem to escape blame.

DNS is invisible to the majority of users. I’ve tried to explain it many times with middling to poor results. The idea that computers on the internet don’t understand words and must rely on services to translate them to numbers never seems to click. And when you add in the reliance on this system and how it can be knocked out with DDoS attacks or hijacking, it always comes back to being about the wireless.

It’s not hard to imagine why. The wireless is the first thing users see when they start having issues. It’s the new firewall. Or the new virus. Or the new popup. It’s a thing they can point to as the single source of problems. And if there is an issue at any point along the way, it must be the fault of the wireless. It can’t possibly be DNS or routing issues or a DDoS on AWS. Instead, the wireless is down.

And so wireless pros find themselves defending their designs and configurations without knowing that there is an issue somewhere else down the line. That’s why the analytics platforms of the future are so important. By giving wireless pros visibility into systems beyond the spectrum, they can reliably state that the wireless isn’t at fault. They can also engage other teams to find out why the DNS servers are down or why the default gateway for the branch office has been changed or is offline. That’s the kind of info that can turn a user away from blaming the wireless for all the problems and finding out what’s actually wrong.


Tom’s Take

If I had a nickel for every problem that was blamed on the wireless network or the firewall or some errant virus when that actually wasn’t the case, I could retire and buy my own evil overlord island next to Larry Ellison. Alas, these are issues that are never going to go away. Instead, the only real hope that we have is speeding the time to diagnose and resolve them by involving professionals that manage the systems that are actually down. And perhaps having some pictures of the monitoring systems goes a long way to tell users that they should make sure that the issue is indeed the wireless before proclaiming that it is. Because, to be honest, it probably isn’t the Wi-Fi.