Cisco’s Catalyst for Change

You’ve probably heard by now of the big launch of Cisco’s new 802.11ax (neé Wi-Fi 6) portfolio of devices. Cisco did a special roundtable with a group of influencers from the community called Just The Tech. Here’s a video from that event covering the APs that were released, the 9120:

Fred always does a great job of explaining the technical bits behind the APs. But one thing that caught my eye here is the name of the AP – Catalyst. Cisco has been using Aironet for their AP line since they purchased Aironet Wireless Communications back in 1999. The name was practically synonymous with wireless technologies for many people in the industry that worked exclusively with Cisco technologies.

So, is the name change something we should be concerned about?

A Rose Is a Rose Is An AP

Cisco moving toward a unified naming convention for their edge solutions makes a lot of sense. Ten years ago, wireless was still primarily 802.11g-based with 802.11n still a few months away from being proposed and ratified. Connectivity hadn’t quite yet reached the ubiquitous levels of wireless that we see today. The iPhone was only about to be on its third revision.

Cisco Catalyst devices were still the primary method of getting users connected to the network. Even laptop users hunted for Ethernet ports everywhere instead of just connecting to wireless. Ethernet was more reliable and faster than 54Mbps (at best) and fighting contention with all the other devices around. Catalyst stood for reliability.

In the time since, wireless has become the new edge device connectivity. No longer do we hunt for Ethernet ports unless we have a specific need for one. Laptops don’t come with dedicated wired networking options any longer. In 2019, wireless is king. And Aironet is the wireless name that Cisco has built. So why the change?

In short, because edge connectivity isn’t wired versus wireless any longer. Instead, it’s unified. Whether it was because of the idiotic decisions made by Gartner to required wired switching for their wireless Magic Quadrant (TM) or because people stopped thinking about Ethernet except to power wireless access points, the fact is that the edge no longer has wires. For Cisco, this means that Catalyst switches aren’t the edge any longer. So the name doesn’t have the same power as it once did.

However, the Aironet name has also lost its luster. Why? Because Aironet is a remnant of Cisco’s pre-controller AP past. The line of APs that most people are likely using in their office right now aren’t from the Aironet heritage. Instead, they are based on technology acquired by Cisco from Airespace that Cisco bought in 2005 to add controller-based technology to their portfolio. And, aside from references to Airespace in the code of the Wireless LAN Controllers (WLC), the line never really had a brand like Catalyst or Aironet.

Today, Cisco has started the move away from using Airespace technology in their controllers. As this video from 2018 shows, Cisco has begun to migrate their controller OS to a more modern platform instead of relying on modifying the old Airespace code again and again. This means that development going forward should be more rapid and less resultant on the whims of keeping everything running properly on a codebase over a decade old.

Branding New

So, that explains the reasons why Cisco might want to refresh everything. But why the naming of the APs? Why not just rely on Aironet and keep that branding going forward?

Well, because they want to make end users believe that the network is the same no matter if it’s wired or wireless. They want buyers to believe that Catalyst stands for edge connectivity, no matter where that edge might be. And, unless they really screw up and start making us think these new APs are switches they’ll be able to pull off this branding exercise fairly well.

That’s because users have stopped caring about the wired versus wireless debate. Instead, they only care about speed and reliability. 802.11ax will help on both fronts, and Cisco wants to capitalize on that by making these new APs feel different. And the best way to do that is by rebranding them.

Wireless professionals don’t care about the name. Most of the time they just refer to the model number anyway. And while Cisco’s model numbering strategies seem to be getting a bit crowded in the 9000-level of things, this makes a lot of sense to distance themselves from their past. The old 802.11ac APs are still very viable and will likely be useful all they way until the end of their life. But when the time comes to pull them out, you’ll be retiring Aironet and Airespace along with them. Even if you didn’t realize those were the branding names of those APs.


Tom’s Take

Branding matters. Or it doesn’t. Either you love the name of the thing you’ve been using or you couldn’t care less. Whether it’s an iPhone or a car or an access point, everything has a name and a number attached to it. Cisco has decided, for better or worse, to unify the edge under the Catalyst name. Maybe it will stick and reduce confusion with customers. Maybe it will be hated enough that they’ll bring back the Aironet name in a couple of cycles to “get back to basics” as it were. But for now, the catalyst for change at Cisco leads to a unified edge solution.

Advertisements

Increasing Entropy with Crypto4A

Have you ever thought about the increasing disorder in your life? Sure, it may seem like things are constantly getting crazier every time you turn around, but did you know that entropy is always increasing in the universe? It’s a Law of Thermodynamics!

The idea that organized systems want to fall into disorder isn’t too strange when you think about it. Maintaining order takes a lot of effort and disorder is pretty easy to accomplish by just giving up. Anyone with a teenager knows that the amount of disorder that can be accomplished in a bedroom is pretty impressive.

One place where we don’t actually see a lot of disorder is in the computing realm. Computers are based on the idea that there is order and rationality in everything that we do. This is so prevalent that finding a way to be random is actually pretty hard. Computer programmers have tried a number of ways to come up with random number generators that take a variety of inputs into the formula and come up with something that looks sufficiently random. For most people just wanting the system to guess a number between 1 and 100 it’s not too bad. But when it comes to really, really large numbers like the ones used in cryptography, those pseudorandom numbers aren’t good enough.

This All Looks So Familiar…

One of the reasons for this comes down to good old fashioned efficiency. In the old days computers programmers could rely on people to generate pseudorandom input. By sampling mouse clicks or delay between computer keyboard keystrokes you could easily come up with a number that looks nice and random. However, we’ve taken people out of the loop now. Thanks to the cloud and automation and any one of a number of new ways to reduce human input we’ve managed to remove mouse clicks and keystrokes.

That’s fine for running scripts and programs. It’s even good for building things at a huge scale. But it’s really bad when you need something that looks relatively random. And it’s really, really bad when your program relies on that randomness to keep you secure. Kind of like key generation in Public Key Cryptography (PKI).

A group of security researchers working for the National Institute of Standards and Technology (NIST) found out a few years ago that public keys were starting to collide at greater rates than random chance. The study, conducted in 2012, found that 5% of HTTPS and 10% of SSH public keys were duplicates. A collision in a hashing algorithm is when two inputs produce the same output, which renders that hashing function broken. In PKI, having a two different inputs output the same public key is really bad, because it could lead to key collisions that impact a variety of service.

What caused it? As it turns out, lack of orderly disorder. Because automation and non-human interaction have led to other pseudorandom inputs being used in key generation it appeared to the researchers that the same inputs were being used all over the place. That meant that a lot of the public keys that were being generated were being done in such as way as to make collisions more likely. When you look at how many things are relying on automated sources to generate keys it can be quite scary. Think about a smart lightbulb or other IoT device that’s trying to generate pseudorandom input from a CPU that’s just big enough to turn things on. Now imagine that CPU multiplied by the number of smart lightbulbs out there. Not a pleasant thought, is it?

Disorder In The Court

This fascinating discussion came from an interview I had with Bruno Couillard, the President and CTO of Crypto4A. Crypto4A is a company that provides Entropy-as-a-Service. What exactly does that mean?

Crypto4A has an appliance they call QAOS. QAOS is designed to give you the best possible disorder that you can get. It does this the old fashioned way. Instead of trying to use software as a Random Number Generator (RNG) QAOS instead uses hardware sources to generate entropy for their RNG. This includes a quantum RNG, which produces high quality disorder that’s difficult to fake any other way.

QAOS is designed to feed software with entropy to generate randomness sufficient to prevent PKI public key collisions. The software developers can follow the NIST guidelines on EaaS to have the program call an entropy source. QAOS, acting as that entropy source, will seed the RNG on the target system with good randomness and allow it to generate good keys. This could also be configured in the kernel of the OS to call a system like QAOS on boot and start the seed value with a good amount of random entropy in the case of old programs that can’t be modified to call anything other than a system-based RNG source like /dev/random/.


Tom’s Take

The NIST guidelines around EaaS are constantly evolving, but the idea that companies are already racing to fill the void that has been created by insufficient randomness in cryptography is telling. When you think about nth the number of devices that are going to be using PKI for secure communications, the need for something like Crypto4A QAOS is pretty clear. If we are going to rely on automated systems to run our daily lives, we need to have the resources in place to ensure they have a solid foundation of randomness to build on.

The Confluence of SD-WAN and Microsegmentation

If you had to pick two really hot topics in the networking space right now, you’d be hard-pressed to find two more discussed than SD-WAN and microsegmentation. SD-WAN is the former “king of the hill” in the network engineering. I can remember having more conversations about SD-WAN in the last couple of years than anything else. But as the SD-WAN market has started to consolidate and iterate, a new challenger has arrived. Microsegmentation is the word of the day.

However, I think that SD-WAN and microsegmentation are quickly heading toward a merger of ideas and solutions. There are a lot of commonalities between the two technologies that make a lot of sense running together.

SD-WAN isn’t just about packet switching and routing any longer. That’s because networking people have quickly learned that packet-by-packet processing of traffic is inefficient. All of our older network analysis devices could only see things one IP packet at a time. But the new wave of devices think in terms of flows. They can analyze a stream of packets to figure out what’s going on. And what generates those flows?

Applications.

The key to the new wave of SD-WAN technology isn’t some kind of magic method of nailing up VPNs between branch offices. It’s not about adding new connectivity types. Instead, it’s about application identification. App identification is how SD-WAN does QoS now. The move to using app markers means a more holistic method of treating application traffic properly.

SD-WAN has significant value in application handling. I recently chatted with Kumar Ramachandran of CloudGenix and he echoed that part of the reason why they’ve been seeing growth and recently received a Series C funding round was because of what they’re doing with applications. The battle of MPLS versus broadband has already been fought. The value isn’t going to come from edge boxes unless there is software that can help differentiate the solutions.

Segmenting Your Traffic

So, what does this have to do with microsegmentation? If you’ve been following that market, you already know that the answer is the application. Microsegmentation doesn’t work on a packet-by-packet basis either. It needs to see all the traffic flows from an application to figure out what is needed and what isn’t. Platforms that do this kind of work are big on figuring out which protocols should be talking to which hosts and shutting everything else down to secure that communication.

Microsegmentation is growing in the cloud world for sure. I’ve seen and talked to people from companies like Guardicore, Illumio, ShieldX, and Edgewise in recent months. Each of them has a slightly different approach to doing microsegmentation. But they all look at the same basic approach form the start. The application is the basic building block of their technology.

With the growth of microsegmentation in the cloud market to help ensure traffic flows between hosts and sites is secured, it’s a no-brainer that the next big SD-WAN platform needs to add this functionality to their solution. I say this because it’s not that big of a leap to take the existing SD-WAN application analytics software that optimizes traffic flows over links and change it to restrict traffic flow with policy support.

For SD-WAN vendors, it’s another hedge against the inexorable march of traffic into the cloud. There are only so many Direct Connect analogs that you can build before Amazon decides to put you out of business. But, if you can integrate the security aspect of application analytics into your platform you can make your solution very sticky. Because that functionality is critical to meeting audit goals and ensuring compliance. And you’re going to wish you had it when the auditors come calling.


Tom’s Take

I don’t think the current generation of SD-WAN providers are quite ready to implement microsegmentation in their platforms. But I really wouldn’t be surprised to see it in the next revision of solutions. I also wonder if that means that some of the companies that have already purchased SD-WAN companies are going to look at that functionality. Perhaps it will be VMware building NSX microsegmentaiton on top of VeloCloud. Or maybe Cisco will include some of their microsegmentation from ACI in Viptela. They’re going to need to look at that strongly because once companies that are still on their own figure it out they’re going to be the go-to solution for companies looking to provide a good, secure migration path to the cloud. And all those roads lead to an SD-WAN device with microsegmentation capabilities.

802.11ax Is NOT A Wireless Switch

802.11ax is fast approaching. Though not 100% ratified by the IEEE, the spec is at the point where most manufacturers and vendors are going to support what’s current as the “final” version for now. While the spec for what marketing people like to call Wi-Fi 6 is not likely to change, that doesn’t mean that the ramp up to get people to buy it is showing any signs of starting off slow. One of the biggest problems I see right now is the decision by some major AP manufacturers to call 802.11ax a “wireless switch”.

Complex Duplex

In case you had any doubts, 802.11ax is NOT a switch.1 But the answer to why that is takes some explanation. It all starts with the network. More specifically, with Ethernet.

Ethernet is a broadcast medium. Packets are launched into the network and it is hoped that the packet finds the destination. All nodes on the network listen and, if the packet isn’t destined for them they discard it. This is the nature of the broadcast. If multiple stations try to talk at once, the packets collide and no one hears anything. That’s why Ethernet developed a collision detection  system called CSMA/CD.

Switches solved this problem by segmenting the collision domain to a single port. Now, the only communications between the stations would be in the event that the switch couldn’t find the proper port to forward a packet. In every other case, the switch finds where the packet is meant to be sent and forwards it to that location. It prevents collisions by ensuring that no two stations can transmit at any one time except to the switch in the middle. This also allows communications to be full-duplex, meaning the stations can send and receive at the same time.

Wireless is a different medium. The AP still speaks Ethernet, and there is a bridge between the Ethernet interface and the radios on the other side. But the radio interfaces work differently than Ethernet. Firstly, they are half-duplex only. That means that they have to send traffic or listen to receive traffic but they can’t do both at the same time. Wireless also uses a different version of collision detection called CSMA/CA, where the last A stands for “avoidance”. Because of the half-duplex nature of wireless, clients have a complex process to make sure the frequency is clear before transmitting. They have to check whether or not other wireless clients are talking and if the ambient RF is within the proper thresholds. After all those checks are confirmed, then the client transmits.

Because of the half-duplex wireless connection and the need for stations to have permission to send, some people have said that wireless is a lot like an Ethernet hub, which is pretty accurate. All stations and APs exist in the contention (collision) domain. Aside from the contention algorithm, there’s nothing to stop the stations from talking all at once. And for the entire life of 802.11 so far, it’s worked. 802.11ac started to introduce more features designed to let APs send frames to multiple stations at the same time. That’s what’s called Multi-user Multi-In, Multi-out (MU-MIMO).In theory, it could allow for full-duplex transmissions by allowing a client to send on one antenna and receive on another, but utilizing client radios in this way has impacts on other things.

Switching It Up

Enter 802.11ax. The Wi-Fi 6 feature that has most people excited is Orthogonal Frequency-Division Multiple Access (OFDMA). Simply put, OFDMA allows the clients and APs to not use the entire transmission channel for sending data. It can be sliced up into sub-channels that can be used for low-bandwidth applications to reserve time to talk to the AP. Combined with enhanced MU-MIMO support in 802.11ax, the idea is that clients can talk directly to the AP and allocate a specific sub-channel resource unit all to themselves.

To the marketing people in the room, this sounds just like a switch. Reserved channels, single station access, right? Except it is still not a switch. The AP is still a bridge between two media types for one thing, but more importantly the transmission medium still hasn’t magically become full-duplex. Stations may get around this with some kind of trickery, but they still need to wait for the all-clear to send data. Remember that all stations and APs still hear all the transmissions. It’s still a broadcast medium at the most basic. No amount of software configuration is going to fix that. And for the networking people in the room that might be saying “so what?”, remember when Cisco tried to sell us on the idea that StackWise was capable of 40Gbps of throughput because it could send in both directions on the StackWise ring at once? Remember when you started screaming “THAT’S NOT HOW BANDWIDTH WORKS!!!” That’s what this is, basically. Smoke and mirrors and ignoring the underlying physical layer constraints.

In fact, if you read the above resources, you’re going to find a lot of caveats at the end about support for protocols coming up and not being in the first version of the spec. That’s exactly what happened with 802.11ac. The promise of “gigabit Wi-Fi” took a couple of years and the MU-MIMO enhancements everyone was trumpeting never fully materialized. Just like all technology, the really good stuff was deferred to the next release.

To make sure that both sides are heard, it is rightly pointed out by wireless professionals like Sam Clements (@Samuel_Clements) that 802.11ax is the most “switch-like” so far, with multiple dynamic collision domains. However, in the immortal words of Tyler Durden, “Sticking feathers up your butt doesn’t make you a chicken.” The switch moniker is still a marketing construct and doesn’t hold any water in reality aside from a comparison to a somewhat similar technology. The operation of wireless APs may be hub-like or switch-like, but these devices are not either of those types of devices.

CPU Bound and Determined

The other issue that I see that prevents this from becoming a switch is the CPU on the AP becoming a point of contention. In a traditional Ethernet switch, the forwarding hardware is a specialized ASIC that is optimized to forward packets super fast. It does this with some trickery, including cut through for packets and trusting the incoming CRC. When packets bounce up to the CPU to be process-switched, it bogs the entire system down terribly. That’s why most networking texts will tell you to avoid process switching at all costs.

Now apply those lessons to wireless. All this protocol enhancement is now causing the CPU to have to do extra duty to work on time-slicing and sub-channel optimization. And remember that those CPUs are operating on 18-28 watts of power right now. Maybe the newer APs will get over 30 watts with new PoE options, but that means those CPUs are still going to be eating a lot of power to process all this extra software work. Even adding dedicated processing power to the AP isn’t going to fix things in the long run. That might be one of the reasons why Cisco has been pushing enhanced PoE in the run-up to their big 802.11ax launch at the end of April.


Tom’s Take

Let me say it again for the cheap seats: 802.11ax is NOT a wireless switch! The physical layer technology that 802.11 is built on won’t be switchable any time soon. 802.11ax has given us a lot of enhancements in the protocol and there is a lot to be excited about, like OFDMA, BSS coloring, and TWT. But, like the decision to over-simplify the marketing name, the idea of calling it a wireless switch just to give people a frame of reference so they buy more of them is just silly. It’s disingenuous and sounds more like a snake oil salesman than honest technology marketing. Rather than trying to trick the users with cute sounding terms, how about we keep the discussion honest and discuss the pros and cons of the technology?

Special thanks to my friends in the wireless space for proofreading this post and correcting my errors in technology:


  1. The title was kind of a spoiler ↩︎

OpenConfig and Wi-Fi – The Winning Combo

Wireless isn’t easy by any stretch of the imagination. Most people fixate on the spectrum analysis part of the equation when they think about how hard wireless is. But there are many other moving parts in the whole architecture that make it difficult to manage and maintain. Not the least of which is how the devices talk to each other.

This week at Aruba Atmosphere 2019, I had the opportunity to moderate a panel of wireless and security experts for Mobility Field Day Exclusive. It was a fun discussion, as you can see from the above video. As the moderator, I didn’t really get a change to explain my thoughts on OpenConfig, but I figured now would be a great time to jump in with some color on my side of the conversation.

Yin and YANG

One of the most exciting ideas behind OpenConfig for wireless people should be the common YANG data models. This means that you can use NETCONF to have a common programming language against specific YANG models. That means no more fumbling around to remember esoteric commands. You just tell the system what you want it to do and the rest is easy.

As outlined in the video, this has a huge impact on trying to keep configurations standard across different types of APs. Imagine the nightmare of trying to configure power settings or radio thresholds with 3 or more AP manufacturers in your building. Now, imagine being able to do it across your building or dozens of others with a few simple commands and some programming know-how? Doesn’t seem quite as daunting now, does it? It’s easy because you’re speaking the same language across all those APs.

So, what if you don’t care, like Richard McIntosh (@802TopHat) points out? What if your vendor doesn’t support OpenConfig? Well, that’s fine. Not everyone has to support it today. But if you work on building a model system and setting up the automation and API interfaces, are you just going to throw it out the window during your refresh cycle because the new APs that you’re buying don’t support OpenConfig? Or is the need for OpenConfig going to be a huge driver for you and part of the selection process.

Companies are motived by their customers. If you tell them that they need to develop OpenConfig for their devices, they will do it because they run the risk of losing sales. And if the industry moves toward adopting a standard northbound API, what happens to those that get left out in the cold after a few missed refresh cycles? I bet they’ll quickly realize the lost opportunities more than cover the development costs of supporting OpenConfig.

Telemetry Short-Cuts

The other big piece of OpenConfig and wireless is telemetry. SNMP-based monitoring doesn’t work well in today’s wired networks and it’s downright broken in wireless. There are too many variables out there in the average deployment to be able to account for them with anything other than telemetry. Many vendors are starting to adopt the idea of streaming the data directly to collectors via a subscription model. OpenConfig makes this easy with the ability to subscribe to the data you want using OpenConfig models.

From a manufacturer perspective, this is a huge chance to get into telemetry and offer it as a differentiator. If you’re not tied to using an archaic platform with proprietary data models you can embrace OpenConfig and deliver a modern telemetry infrastructure that users will want to adopt. And if the radio performance is the same between all of the offerings, telemetry could be a the piece that tips the scales in your favor.

Single-Vendor Isn’t So Single

I remember doing a deployment for a wireless system once that was “state of the art” when we put it in. I had my challenges and made everything work well and the customer was happy. Until a month later when the supporting vendor announced they were buying a competing company and using that company as their offering going forward. My customer was upset, naturally, but so was I. I spent a lot of time working out how to build and deploy that system and now it was on the scrap heap.

It’s even worse when you keep buying from single vendors and suddenly find that the new products don’t quite conform to the same syntax or capabilities. Maybe the new model of router or AP has a new board that is 95% compatible with the old one, except of that one command you use all the time.

OpenConfig can change that. Because the capabilities of the device have to be outlined you can easily figure out if there are any missing parts and pieces. You can also be sure that your provisioning scripts and programs aren’t going to break or cause problems because a critical command was deprecated. And since you can keep the models around for old hardware as well as new you aren’t going to be duplicating efforts everywhere trying to keep things moving between the platforms.


Tom’s Take

OpenConfig is a great idea for any system that has distributed components. Even if it never takes off in Wi-Fi, it will force the manufacturers to do a bit better job of documenting their capabilities and making them easy to consume via API. And anything that exposes more functionality to be consumed by automation and programmability is a good thing indeed.

Fast Friday – Aruba Atmosphere 2019

A couple of quick thoughts that I’m having ahead of Aruba Atmosphere next week in Las Vegas, NV. Tech Field Day has a lot going on and you don’t want to miss a minute of the action for sure, especially on Wednesday at 3:15pm PST. In the meantime:

  • IoT is really starting to more down-market. Rather than being focused on enabling large machines with front-end devices to act as gateways we’re starting to see more and more IoT devices either come with integrated connective technology or interface with systems that do. Building control systems aren’t just for large corporations any more. You can automate an office on the cheap today. Just remember that any device that can talk can also listen. Security posture is going to be huge.
  • I remember some of the discussions that we had during the heady early days of SDN and how unimpressed wireless and mobility people were when they figured out how the controllers and dumb edge devices really worked. Most wireless pros have been there and done that already. However, recently there has been a lot of movement in the OpenConfig community around wireless devices. And that really has the wireless folks excited. Because the promise of SDN for them has never been about control, but instead about compatibility. The real key isn’t building another controller but instead making all the APs and controllers work better together.
  • Another great thing I’m looking forward too seeing at Atmosphere is Aruba HER. It’s an event focused on building stronger communities and increasing diversity for all. You can read a bit more about what will be going on there in this post from Claire Chaplais. Make sure to check out Zoë Rose keynoting the event as well! She’s got a very powerful story to tell. She gave us all a bit of it at Security Field Day last December in this Ignite Talk.

Tom’s Take

Make sure you stay tuned for all the things we’re going to be discussing during the event. We’re going to be using the event hashtag #ATM19 but also using #MFDx as a way to let you know about the great stuff we will have going on!

The Blogging Mirror

Writing isn’t always the easiest thing in the world to do. Coming up with topics is hard, but so too is making those topics into a blog post. I find myself getting briefings on a variety of subjects all the time, especially when it comes to networking. But translating those briefings into blog posts isn’t always straight forward. When I find myself stuck and ready to throw in the towel I find it easy to think about things backwards.

A World Of Pure Imagination

When people plan blog posts, they often think about things in a top-down manner. They come up with a catchy title, then an amusing anecdote to open the post. Then they hit the main idea, find a couple of supporting arguments, and then finally they write a conclusion that ties it all together. Sound like a winning formula?

Except when it isn’t. How about when the title doesn’t reflect the content of the post? Or the anecdote or lead in doesn’t quite fit with the overall tone? How about when the blog starts meandering away from the main idea halfway through with a totally separate argument? Or when the conclusion is actually the place where the lede is buried like the Ark of the Covenant?

All of these things are artifacts of the creative process. We often brainstorm great ideas halfway through the process and it derails our train of thought. That leads us down tangents we never intended to go down and create posts that aren’t thematic or even readable in some cases.

It happens all the time. In fact, even in writing this post I thought of a catchy title for a subject heading and had to move it when I was done because the heading didn’t fit the content of the section that followed. It’s okay to have the freedom to change that as soon as you see it. Provided you have a plan for the rest of the post. And that’s where the key here comes into play.

Strike That, Reverse It

I find the easiest way to plan a blog post is to actually write it in reverse. Instead of thinking about things from a top-down method, I start off by thinking about thinks bottom up. Literally.

  • Start From The End – It’s easiest to write the conclusion of your post first. After all, you’re just restating what you’ve been arguing or demonstrating in the post, right? So start with that. Use it as the main idea of your writing. Always refer back to it. If what you’ve typed doesn’t fit the tone of the conclusion, you either need to support it or cut it.
  • Support Your Conclusion – Now that you know what you’re going to be talking about, figure out how to support it. that means figuring out how to break your argument in to paragraphs and logical sections. Note that even though you’re trying to optimize for reading on screens today, you still need to follow basic structure. Paragraphs have multiple sentences that support the main idea. One you have two or three of those arguments, you’ve got support for your conclusion.
  • State The Topic – After you build your support for your conclusion then you can write the topic. After all, you just spent a lot of time spelling it all out. This paragraph at the top is where you state the purpose or theme of the post. Don’t worry about getting into too much detail here. That’s what the support is for. Your readers will get the idea by the time they get to the conclusion, which serves to wrap it all together.
  • Build Your Anecdote – If you are the type of writer that likes to open with an anecdote, much like a cold open in a drama, this is where you write it. Now that you’ve basically outlined the whole post you can tie your anecdote into the rest of the narrative. You don’t have to worry about building your discussion to support the really cool story. Because you’re adding the story at the end of the creative process you can guarantee that it’s going to fit.
  • Title Card – Now that you’ve written the post you can title it. This keeps you from making a title that doesn’t fit the narrative. It also allows the title to make a bit more sense in context. Either because you called the post something cute and catchy or because you made the most SEO optimized title in history to reap those sweet, sweet Google searches.

Tom’s Take

As you can see, posts are easier to write in reverse. When you think about things the opposite way from the restrictive methods of writing you’re much more free to express your creativity while also keeping yourself on track to make sure everything makes sense. Some people thrive in the realm of structure and can easily crank out a post from the top down. But when you find yourself stuck because you can’t tie everything together the right way try looking in a blogging mirror. The results will end up the same, but backwards might just be the way forward.