Fast Friday Thoughts From Security Field Day

It’s a busy week for me thanks to Security Field Day but I didn’t want to leave you without some thoughts that have popped up this week from the discussions we’ve been having. Security is one of those topics that creates a lot of thought-provoking ideas and makes you seriously wonder if you’re doing it right all the time.

  • Never underestimate the value of having plumbing that connects all your systems. You may look at a solution and think to yourself “All this does is aggregate data from other sources”. Which raises the question: How do you do it now? Sure, antivirus fires alerts like a car alarm. But when you get breached and find out that those alerts caught it weeks ago you’re going to wish you had a better idea of what was going on. You need a way to send that data somewhere to be dealt with and cataloged properly. This is one of the biggest reasons why machine learning is being applied to the massive amount of data we gather in security. Having an algorithm working to find the important pieces means you don’t miss things that are important to you.
  • Not every solution is going to solve every problem you have. My dishwasher does a horrible job of washing my clothes or vacuuming my carpets. Is it the fault of the dishwasher? Or is it my issue with defining the problem? We need to scope our issues and our solutions appropriately. Just because my kitchen knives can open a package in a pinch doesn’t mean that the makers need to include package-opening features in a future release because I use them exclusively for that purpose. Once we start wanting the vendors to build a one-stop-shop kind of solution we’re going to create the kind of technical debt that we need to avoid. We also need to remember to scope problems so that they’re solvable. Postulating that there are corner cases with no clear answers are important for threat hunting or policy creation. Not so great when shopping through a catalog of software.
  • Every term in every industry is going to have a different definition based on who is using it. A knife to me is either a tool used on a campout or a tool used in a kitchen. Others see a knife as a tool for spreading butter or even doing surgery. It’s a matter of perspective. You need to make sure people know the perspective you’re coming from before you decide that the tool isn’t going to work properly. I try my best to put myself in the shoes of others when I’m evaluating solutions or use cases. Just because I don’t use something in a certain way doesn’t mean it can’t be used that way. And my environment is different from everyone else’s. Which means best practices are really just recommended suggestions.
  • Whatever acronym you’ve tied yourself to this week is going to change next week because there’s a new definition of what you should be doing according to some expert out there. Don’t build your practice on whatever is hot in the market. Build it on what you need to accomplish and incorporate elements of new things into what you’re doing. The story of people ripping and replacing working platforms because of an analyst suggestion sounds horrible but happens more often than we’d like to admit. Trust your people, not the brochures.

Tom’s Take

Security changes faster than any area that I’ve seen. Cloud is practically a glacier compare to EPP, XDR, and SOPV. I could even make up an acronym and throw it on that list and you might not even notice. You have to stay current but you also have to trust that you’re doing all you can. Breaches are going to happen no matter what you do. You have to hope you’ve done your best and that you can contain the damage. Remember that good security comes from asking the right questions instead of just plugging tools into the mix to solve issues you don’t have.

Getting Blasted by Backdoors

Open Door from http://viktoria-lyn.deviantart.com/

I wanted to take minute to talk about a story I’ve been following that’s had some new developments this week. You may have seen an article talking about a backdoor in Juniper equipment that caused some issues. The issue at hand is complicated at the linked article does a good job of explaining some of the nuance. Here’s the short version:

  • The NSA develops a version of Dual EC random number generation that includes a pretty substantial flaw.
  • That flaw? If you know the pseudorandom value used to start the process you can figure out the values, which means you can decrypt any traffic that uses the algorithm.
  • NIST proposes the use of Dual EC and makes it a requirement for vendors to be included on future work. Don’t support this one? You don’t get to even be considered.
  • Vendors adopt the standard per the requirement but don’t make it the default for some pretty obvious reasons.
  • Netscreen, a part of Juniper, does use Dual EC as part of their default setup.
  • The Chinese APT 5 hacking group figures out the vulnerability and breaks into Juniper to add code to Netscreen’s OS.
  • They use their own seed value, which allows them to decrypt packets being encrypted through the firewall.
  • Hilarity does not ensue and we spend the better part of a decade figuring out what has happened.

That any of this even came to light is impressive considering the government agencies involved have stonewalled reporters and it took a probe from a US Senator, Ron Wyden, to get as far as we have in the investigation.

Protecting Your Platform

My readers know that I’m a pretty staunch advocate for not weakening encryption. Backdoors and “special” keys for organizations that claim they need them are a horrible idea. The safest lock is one that can’t be bypassed. The best secret is one that no one knows about. Likewise, the best encryption algorithms are ones that can’t be reversed or calculated by anyone other than the people using them to send messages.

I get that the flood of encrypted communications today is making life difficult for law enforcement agencies all over the world. It’s tempting to make it a requirement to allow them a special code that will decrypt messages to keep us safe and secure. That’s the messaging I see every time a politician wants to compel a security company to create a vulnerability in their software just for them. It’s all about being safe.

Once you create that special key you’ve already lost. As we saw above, the intentions of creating a backdoor into an OS so that we could spy on other people using it backfired spectacularly. Once someone else figured out that you could guess the values and decrypt the traffic they set about doing it for themselves. I can only imagine the surprise at the NSA when they realized that someone had changed the values in the OS and that, while they themselves were no longer able to spy with impunity, someone else could be decrypting their communications at that very moment. If you make a key for a lock someone will figure out how to make a copy. It’s that simple.

We focus so much on the responsible use of these backdoors that we miss the bigger picture. Sure, maybe we can make it extremely difficult for someone in law enforcement to get the information needed to access the backdoor in the name of national security. But what about other nations? What about actors not tied to a political process or bound by oversight from the populace. I’m more scared that someone that actively wishes to do me harm could find a way to exploit something that I was told had to be there for my own safety.

The Juniper story gets worse the more we read into it but they were only the unlucky dancer with a musical chair to slip into when the music stopped. Any one of the other companies that were compelled to include Dual EC by government order could have gotten the short straw here. It’s one thing to create a known-bad version of software and hope that someone installs it. It’s an entirely different matter to force people to include it. I’m honestly shocked the government didn’t try to mandate that it must be used exclusively of other algorithms. In some other timeline Cisco or Palo Alto or even Fortinet are having very bad days unwinding what happened.


Tom’s Take

The easiest way to avoid having your software exploited is not to create your own exploit for it. Bugs happen. Strange things occur in development. Even the most powerful algorithms must eventually yield to Moore’s Law or Shor’s Algorithm. Why accelerate the process by cutting a master key? Why weaken yourself on purpose by repeating over and over again that this is “for the greater good”? Remember that the greater good may not include people that want the best for you. If you’re wiling to hand them a key to unlock the chaos that we’re seeing in this case then you have overestimated your value to the process and become the very bad actor you hoped to stop.

Securing Your Work From Home

UnlockedDoor

Wanna make your security team’s blood run cold? Remind them that all that time and effort they put in to securing the enterprise from attackers and data exfiltration is currently sitting unused while we all work from home. You might have even heard them screaming at the sky just now.

Enterprise security isn’t easy, nor should it be. We constantly have to be on the offensive to find new attack vectors and hunt down threats and exploits. We have spent years and careers building defense-in-depth to an artform not unlike making buttery croissants. It’s all great when that apparatus is protecting our enterprise data center and cloud presence like a Scottish castle repelling invaders. Right now we’re in the wilderness with nothing but a tired sentry to protect us from the marauders.

During Security Field Day 4, I led a discussion panel with the delegates about the challenges of working from home securely. Here’s a link to our discussion that I wanted to spend some time elaborating on:

Home Is Where the Exploits Are

BYOD was a huge watershed moment for the enterprise because we realized for the first time that we had to learn to secure other people’s devices. We couldn’t rely on locked-down laptops and company-issued phones to keep us safe. Security exploded when we no longer had control of the devices we were trying to protect. We all learned hard lessons about segmenting networks and stopping lateral attacks from potentially compromised machines. It’s all for naught now because we’re staring at those protections gathering dust in an empty office. With the way that commercial real estate agents are pronouncing a downturn in their market, we may not see them again soon.

Now, we have to figure out how to protect devices we don’t own on networks we don’t control. For all the talk of VPNs for company devices and SD-WAN devices at the edge to set up on-demand protection, we’re still in the dark when it comes to the environment around our corporate assets. Sure, the company Thinkpad is safe and sound and isolated at the CEO’s house. But what about his wife’s laptop? Or the kids and their Android tablets? Or even the smart speakers and home IoT devices around it? How can we be sure those are all safe?

Worse still, how do you convince the executives of a company that their networks aren’t up to par? How can you tell someone that controls your livelihood they need to install more firewalls or segment their network for security? If the PlayStation suddenly needs to authenticate to the wireless and is firewalled away from the TV to play movies over AirPlay, you’re going to get a lot of panicked phone calls.

Security As A Starting Point

If we’re going to make Build Your Own Office (BYOO) security work for our enterprise employees, we need to reset our goals. Are we really trying to keep everyone 100% safe and secure 100% of the time? Are we trying for total control over all assets? Or is there a level of insecurity we are willing to accept to make things work more smoothly?

On-demand VPNs are a good example. It’s fine to require them to access company resources behind a firewall in the enterprise data center. But does it need to be enabled to access things in the public cloud? Should the employee have to have it enabled if they decide to work on the report at 8:00pm when they haven’t ever needed it on before? These challenges are more about policy than technology.

Policy is the heart of how we need to rebuild BYOO security. We need to examine which policies are in place now and determine if they make sense for people that may never come back into the office. Don’t want to use the VPN for connectivity? Fine. However, you will need to enable two-factor authentication (2FA) on your accounts and use a software token on your phone to access our systems. Don’t want to install the apps on your laptop to access cloud resources? We’re going to lock you out until we’ve evaluated everything remotely for security purposes.

Policy has an important role to play. It is the reason for our technology and the driver for our work. Policy is why I have 2FA enabled on all my corporate accounts. Policy is why I don’t have superuser rights to certain devices but instead authenticate changes as needed with suitable logging. Policy is why I can’t log in to a corporate email server from a vacation home in the middle of nowhere because I’m not using a secured connection. It’s all relevant to the way we do business.

Pushing Policy Buttons

You, as a security professional, need to spend the rest of 2020 doing policy audits. You’re going to get crosseyed. You’re going to hate it. So will anyone you contact about it. Trust me, they hate it just like you do. But you have to make it happen., You have to justify why you’re doing things the way you’re doing them. “This is how we’ve always done it” is no longer justification for a policy. We’re still trying to pull through a global pandemic that has costs thousands their jobs and displaced thousands more to a home they never thought was going to support actual work. Now is not the time to get squeamish.

It’s time to scrub your policies down to the baseboards and get to cleaning and building them back up. Figure out what you need and what is required. Implement changes you’ve always needed to make, like software updates or applications that enhance security. If you want to make it stick in this new world of working from home you need to put it in place at the deepest levels now. And it needs to stick for everyone. No executive workarounds. No grace extensions for them to keep their favorite insecure apps or allowing them to not have 2FA enabled on everything. They need to lead by example from the front, not lag in the back being insecure.


Tom’s Take

I loved the talk at Security Field Day about security at home. We weighed a lot of things that people aren’t really thinking about right now because we haven’t had a major breach in “at home” security. Yet. We know it’s coming and if it happens the current state of network segementation isn’t going to be kind to whomever is under the gun. Definitely watch the video above and tell me your thoughts, either on the video comments or here. We can keep things safe and secure no matter where we are. We just need to think about what that looks like at the lowest policy level and build up from there.

Security and Salt

One of the things I picked up during the quarantine is a new-found interest in cooking. I’ve been spending more time researching recipes and trying to understand how my previous efforts to be a four-star chef have fallen flat. Thankfully, practice does indeed make perfect. I’m slowly getting better , which is to say that my family will actually eat my cooking now instead of just deciding that pizza for the fourth night in a row is a good choice.

One of the things I learned as I went on was about salt. Sodium Chloride is a magical substance. Someone once told me that if you taste a dish and you know it needs something but you’re not quite sure what that something is, the answer is probably salt. It does a lot to tie flavors together. But it’s also a fickle substance. It has the power to make or break a dish in very small amounts. It can be the difference between perfection and disaster. As it turns out, it’s a lot like security too.

Too Much is Exactly Enough

Security and salt are alike in the first way because you need the right amount to make things work. You have to have a minimum amount of both to make something viable. If you don’t have enough salt in your dish you won’t be able to taste it. But you also won’t be able to pull the flavors in the dish together with it. So you have to work with a minimum. Whether its a dash or salt or a specific minimum security threshold, you have to have enough to matter otherwise it’s the same as not having it at all.

To The Salt Mines

Likewise, the opposite effect is also detrimental. If you need to have the minimum amount to be effective, the maximum amount of both salt and security is bad. We all know what happens when we put too much salt into a dish. You can’t eat it at all. While there are tricks to getting too much salt out of a dish they change the overall flavor profile of whatever you’re making. Even just a little too much salt is very apparent depending on the dish you’re trying to make. Likewise, too much security is a deterrent to getting actual work done. Restrictive controls get in the way of productivity and ultimately lead to people trying to work out solutions that don’t solve the problem but instead try to bypass the control.

Now you may be saying to yourself, “So, the secret is to add just the right amount of security, right?” And you would be correct. But what is the right amount? Well, it’s not unlike trying to measure salt by sight instead of using a measuring device. Have you ever seen a chef or TV host pour an amount of salt into their hands and say it needs “about that much”? Do you know how they know how much salt to add? It’s not rocket science. Instead, it’s the tried-and-true practice of practice. They know about how much salt a dish needs for a given cooking time or flavor profile. They may have even made the dish a few times in order to understand when it might need more or less salt. They know that starches need more salt and delicate foods need less. Most importantly, they measured how much salt they can hold in their cupped hand. So they know what a teaspoon and tablespoon of salt look like in their palm.

How is this like security? Most Infosec professionals know inherently how to make things more secure. Their experience and their training tell them how much security to add to a system to make it more secure without putting too much in place to impede the operations of the system. They know where to put an IPS to provide maximum coverage without creating too many false positives. And they can do that because they have the experience to know how to do it right without guessing. Because the odds are good they’ve done it wrong at least one time.

The last salty thing to remember is that even when you have the right amounts down to a science you’re still going to need to figure out how to make it perfect. Potato soup is a notoriously hard dish to season properly. As mentioned above, starchy foods tend to soak up salt. You can fix a salty dish by putting a piece of a potato in it to soak up the salt. But is also means that it’s super hard to get it right when everything in your dish soaks up salt. But the best chefs can get it right. Because they know where to start and they know to test the dish before they do more. They know they need to start from a safe setup and push out from there without ruining everything. They know that no exact amount is the same between two dishes and the only way to make sure it’s right is to test until you get it right. Then make notes so you know how to make it better the next time.


Tom’s Take

Salt is one of my downfalls. I tend to like things salty, so I put too much in when I taste things. It’s never too salty for me unless my mouth shrinks up like a desiccated dish. That’s why I also have to rely on my team at home to help me understand when something is just right for them so I don’t burn out their taste buds either. Security is the same. You need a team that understands everything from their own perspective so they can help you get it right all over. You can’t take salt out of a dish without a massive crutch. And you can’t really reduce too much security without causing issues like budge overruns or costly meetings to decide what to remove. It’s better to get your salt and your security right in the first place.

The End of SD-WAN’s Party In China

As I was listening to Network Break Episode 257 from my friends at Packet Pushers, I heard Greg and Drew talking about a new development in China that could be the end of SD-WAN’s big influence there.

China has a new policy in place, according to Axios, that enforces a stricter cybersecurity stance for companies. Companies doing business in China or with offices in China must now allow Chinese officials to get into their networks to check for security issues as well as verifying the supply chain for network security.

In essence, this is saying that Chinese officials can have access to your networks at any time to check for security threats. But the subtext is a little less clear. Do they get to control the CPE as well? What about security constructs like VPNs? This article seems to indicate that as of January 1, 2020, there will be no intra-company VPNs authorized by any companies in China, whether Chinese or foreign businesses in China.

Tunnel Collapse

I talked with a company doing some SD-WAN rollouts globally in China all the way back in 2018. One of the things that was brought up in that interview was that China was an unknown for American companies because of the likelihood of changing that model in the future. MPLS is the current go-to connectivity for branch offices. However, because you can put an SD-WAN head-end unit there and build an encrypted tunnel back to your overseas HQ it wasn’t a huge deal.

SD-WAN is a wonderful way to ensure your branches are secure by default. Since CPE devices “phone home” and automatically build encrypted tunnels back to a central location, such as an HQ, you can be sure that as soon as the device powers on and establishes global connectivity that all traffic will be secure over your VPN until you change that policy.

Now, what happens with China’s new policy? All traffic must transit outside of a VPN. Things like web traffic aren’t as bad but what about email? Or traffic destined for places like AWS or Azure? It was an unmentioned fact that using SD-WAN VPNs to transit through the content filters in place in China was a way around issues that might arise from accessing resources inside of a very well secured country-wide network.

With the policy change and enforcement guidelines set forth to be enacted in 2020, this could be a very big deal for companies hoping to use SD-WAN in China. First and foremost, you can’t use your intra-company VPN functions any longer. That effectively means that your branch office can’t connect to the HQ or the rest of your corporate network. Given some of the questions around intellectual property issues in China that might not be a bad thing. However, it is going to cause issues for your users trying to access the mail and other support services. Especially if they are hosted somewhere that is going to create additional scrutiny.

The other potential issue is whether or not Chinese officials are even going to allow you to use CPE of your own choosing in the future. If the mandate is that officials should have access to your network for security concerns, who is to say they can’t just dictate what CPE you should use in order to facilitate that access. Larger companies can probably negotiate for come kind of on-site server that does network scanning. But smaller branches are likely going to need to have an all-in-one device at the head end doing all the work. The additional benefit for the Chinese is that control of the head end CPE ensures that you can’t build a site-to-site VPN anywhere.

Peering Into The Future

Greg and Drew pontificate a bit on the future on what this means for organizations from foreign countries doing business in China in the future. I tend to agree with them on a few points. I think you’re going to see a push for Chinese offices of major companies treating them like zero-trust endpoints. All communications will be trading minimal information. Networks won’t be directly connected, either by VPN substitute or otherwise.

Looking further down the road makes the plans even more murky. Is there a way that you can certify yourself to have a standard for cybersecurity? We have something similar with regulations here in the US were we can submit compliance reports for various agencies and submit to audits or have audits performed by third parties. But if the government won’t take that as an answer how do you even go about providing the level of detail they want? If the answer is “you can’t”, then the larger discussion becomes whether or not you can comply with their regulations and reduce your business exposure while still making money in this market. And that’s a conversation no technology can solve.


Tom’s Take

SD-WAN gives us a wonderful set of features included in the package. Things like application inspection are wonderful to look at on a dashboard but I’ve always been a bigger fan of the automatic VPN service. I like knowing that as soon as I turn up my devices they become secure endpoints for all my traffic. Alas, all the technology in the world can be defeated by business or government regulation. If the rules say you can’t have a feature, you either have to play by the rules or quit playing the game. It’s up to businesses to decide how they’ll react going forward. But SD-WAN’s greatest feature may now have to be an unchecked box on that dashboard.

The Confluence of SD-WAN and Microsegmentation

If you had to pick two really hot topics in the networking space right now, you’d be hard-pressed to find two more discussed than SD-WAN and microsegmentation. SD-WAN is the former “king of the hill” in the network engineering. I can remember having more conversations about SD-WAN in the last couple of years than anything else. But as the SD-WAN market has started to consolidate and iterate, a new challenger has arrived. Microsegmentation is the word of the day.

However, I think that SD-WAN and microsegmentation are quickly heading toward a merger of ideas and solutions. There are a lot of commonalities between the two technologies that make a lot of sense running together.

SD-WAN isn’t just about packet switching and routing any longer. That’s because networking people have quickly learned that packet-by-packet processing of traffic is inefficient. All of our older network analysis devices could only see things one IP packet at a time. But the new wave of devices think in terms of flows. They can analyze a stream of packets to figure out what’s going on. And what generates those flows?

Applications.

The key to the new wave of SD-WAN technology isn’t some kind of magic method of nailing up VPNs between branch offices. It’s not about adding new connectivity types. Instead, it’s about application identification. App identification is how SD-WAN does QoS now. The move to using app markers means a more holistic method of treating application traffic properly.

SD-WAN has significant value in application handling. I recently chatted with Kumar Ramachandran of CloudGenix and he echoed that part of the reason why they’ve been seeing growth and recently received a Series C funding round was because of what they’re doing with applications. The battle of MPLS versus broadband has already been fought. The value isn’t going to come from edge boxes unless there is software that can help differentiate the solutions.

Segmenting Your Traffic

So, what does this have to do with microsegmentation? If you’ve been following that market, you already know that the answer is the application. Microsegmentation doesn’t work on a packet-by-packet basis either. It needs to see all the traffic flows from an application to figure out what is needed and what isn’t. Platforms that do this kind of work are big on figuring out which protocols should be talking to which hosts and shutting everything else down to secure that communication.

Microsegmentation is growing in the cloud world for sure. I’ve seen and talked to people from companies like Guardicore, Illumio, ShieldX, and Edgewise in recent months. Each of them has a slightly different approach to doing microsegmentation. But they all look at the same basic approach form the start. The application is the basic building block of their technology.

With the growth of microsegmentation in the cloud market to help ensure traffic flows between hosts and sites is secured, it’s a no-brainer that the next big SD-WAN platform needs to add this functionality to their solution. I say this because it’s not that big of a leap to take the existing SD-WAN application analytics software that optimizes traffic flows over links and change it to restrict traffic flow with policy support.

For SD-WAN vendors, it’s another hedge against the inexorable march of traffic into the cloud. There are only so many Direct Connect analogs that you can build before Amazon decides to put you out of business. But, if you can integrate the security aspect of application analytics into your platform you can make your solution very sticky. Because that functionality is critical to meeting audit goals and ensuring compliance. And you’re going to wish you had it when the auditors come calling.


Tom’s Take

I don’t think the current generation of SD-WAN providers are quite ready to implement microsegmentation in their platforms. But I really wouldn’t be surprised to see it in the next revision of solutions. I also wonder if that means that some of the companies that have already purchased SD-WAN companies are going to look at that functionality. Perhaps it will be VMware building NSX microsegmentaiton on top of VeloCloud. Or maybe Cisco will include some of their microsegmentation from ACI in Viptela. They’re going to need to look at that strongly because once companies that are still on their own figure it out they’re going to be the go-to solution for companies looking to provide a good, secure migration path to the cloud. And all those roads lead to an SD-WAN device with microsegmentation capabilities.

What Makes IoT A Security Risk?

IoT security is a pretty hot topic in today’s world. That’s because the increasing number of smart devices is causing issues with security professionals everywhere. Consumer IoT devices are expected to top 20 billion by 2020. And each of these smart devices represents an attack surface. Or does it?

Hello, Dave

Adding intelligence to a device increases the number of ways that it can compromised. Take a simple thermostat, for example. The most basic themostat is about as dumb as you can get. It uses the expansion properties of metal to trigger switches inside of the housing. You set a dial or a switch and it takes care of the rest. Once you start adding things like programmability or cloud connection, you increase the number of ways that you can access the device. Maybe it’s a webpage or an app. Maybe you can access it via wireless or Bluetooth. No matter how you do it, it’s more available than the simple version of the thermostat.

What about industrial IoT devices? The same rule applies. In this case, we’re often adding remote access to Supervisory Control And Data Acquistion (SCADA) systems. There’s a big market from enterprise IT providers to create secured equipment that allows access to existing industrial equipment from centralized control dashboards. It makes these devices “smart” and allows you to make them easier to manage.

Industrial IoT has the same kind of issues that consumer devices do. We’re increasing the number of access avenues to these devices. But does that mean they’re a security risk? The question could be as simple as asking if the devices are any easier to hack than their dumb counterparts. If that is our only yardstick, then the answer is most assuredly yes they are a security risk. My fridge does not have the ability for me to access it over the internet. By installing an operating system and connecting it to the wireless network in my house I’m increasing the attack surface.

Another good example of this increasing attack surface is in home devices that aren’t consumer focused. Let’s take a look at the electrical grid. Our homes are slowly being upgraded with so-called “smart” electrical meters that allow us to have more control over power usage in our homes. It also allows the electric companies to monitor the devices more closely and read the electric meters remotely instead of needing to dispatch humans to read those meters. These smart meters often operate on Wi-Fi networks for ease-of-access. If all we do is add the meters to a wireless network, are we really creating security issues?

Bigfoot-Sized Footprints

No matter how intelligent the device, increasing access avenues to the device creates security access issues. A good example of this is the “hidden” diagnostic port on the original Apple Watch. Even though the port had no real use beyond internal diagnostics at Apple, it was a tempting target for people to try and get access to the system. Sometimes these hidden ports can dump hidden data or give low-level access to areas of the system that aren’t normally available. While the Apple Watch port didn’t have this kind of access, other devices can offer it.

Giving access to any device allows you to attack it in a way that can gain you access that can get you into data that you’re not supposed to have. Sure, a smart speaker is a very simple device. But what if someone found a way to remotely access the data and capture the data stream? Or the recording buffer? Most smart speakers are monitoring audio data listening for their trigger word to take commands. Normally this data stream is dumped. But what if someone found a way to reconstruct it? Do you think that could qualify as a hack? All it takes is an enterprising person to figure out how to get low-level access. And before you say it’s impossible, remember that we allow access to these devices in other ways. It’s only a matter of time before someone finds a hole.

As for industrial machines, these are even more tempting. By gaining access to the master control systems, you can cause some pretty credible havoc with their programming. You can shut down all manner of industrial devices. Stuxnet was a great example of writing a very specific piece of malware that was designed to cause problems for a specific kind of industrial equipment. Because of the nature of the program it was very difficult to figure out exactly what was causing the issues. All it took was access to the systems, which was reportedly caused by hiding the program on USB drives and seeding them in parking lots where they would be picked up and installed in the target facilities.

IoT devices, whether consumer or enterprise, represent potential threat vectors. You can’t simply assume that a simple device is safe because there isn’t much to hack. The Mirai bonnet exploited bad password hygiene in devices to allow them to be easily hacked. It wasn’t a complicated silicon-level hack or a coordinated nation state effort. It was the result of someone cracking a hard-coded password and exploiting that for their own needs. Smart devices can be made to make dumb decisions when used improperly.


Tom’s Take

IoT security is both simple and hard at the same time. Securing these devices is a priority for your organization. You may never have the compromised, but you have to treat them just like you would any other device that could potentially be hacked and turned against you. Zero-trust security models are a great way to account for this, but you need to make sure you’re not overlooking IoT when you build that model. Because the invisible devices helping us get our daily work done could quickly become the vector for hacking attacks that bring our day to a grinding halt.

Facebook’s Mattress Problem with Privacy

If you haven’t had a chance to watch the latest episode of the Gestalt IT Rundown that I do with my co-workers every Wednesday, make sure you check this one out. Because it’s the end of the year it’s customary to do all kinds of fun wrap up stories. This episode focused on what we all thought was the biggest story of the year. For me, it was the way that Facebook completely trashed our privacy. And worse yet, I don’t see a way for this to get resolved any time soon. Because of the difference between assets and liabilities.

Contact The Asset

It’s no secret that Facebook knows a ton about us. We tell it all kinds of things every day we’re logged into the platform. We fill out our user profiles with all kinds of interesting details. We click Like buttons everywhere, including the one for the Gestalt IT Rundown. Facebook then keeps all the data somewhere.

But Facebook is collecting more data than that. They track where our mouse cursors are in the desktop when we’re logged in. They track the amount of time we spend with the mobile app open. They track information in the background. And they collect all of this secret data and they store it somewhere as well.

This data allows them to build an amazingly accurate picture of who we are. And that kind of picture is extremely valuable to the right people. At first, I thought it might be the advertisers that crave this kind of data. Advertisers are the people that want to know exactly who is watching their programs. The more data they have about demographics the better they can tailor the message. We’ve already seen that with specific kinds of targeted posts on Facebook.

But the people that really salivate over this kind of data live in the shadows. They look at the data as a way to offer new kinds of services. Don’t just sell people things. Make them think differently. Change their opinions about products or ideas without them even realizing it. The really dark and twisted stuff. Like propaganda on a whole new scale. Enabled by the fact that we have all the data we could ever want on someone without even needing to steal it from them.

The problem with Facebook collecting all this data about us is that it’s an asset. It’s not too dissimilar from an older person keeping all their money under a mattress. We scoff at that person because a mattress is a terrible place to keep money. It’s not safe. And a bank will pay you keep your money there, right?

On the flip side, depending on the age of that person, they may not believe that banks are safe. Before FDIC, there was no guarantee your money would be repaid in a pinch. And if the bank goes out of business you can’t get your investment back. For a person that lived through the Great Depression that had to endure bank holidays and the like, keeping your asset under a mattress is way safer than giving it to someone else.

As an aside here, remember that banks don’t like leaving your money laying around either. If you deposit money in a bank, they take that money and invest it in other places. They put the money to work for them making money. The interest that you get paid for savings accounts and the like is just a small bonus to encourage you to keep your money in the bank and not to pull it out. That’s why they even have big disclaimers saying that your money may not be available to withdraw at a moment’s notice. Because if you do decide to get all of your money out of the bank at once, they need to go find the money to give you.

Now, let’s examine our data. Or, at least the data that Facebook has been storing on us. How do you think Facebook looks at that data? Do you believe they want to keep it under the mattress where it’s safe from the outside world? Do you think that Facebook wants to keep all these information locked in a vault somewhere where no one can get to it?

Or perhaps Facebook looks at your data as an asset like a bank does. Instead of keeping it around and letting it sit fallow they’d rather put it to work. That’s the nature of a valuable asset. To the average person, their privacy is one of the most important parts of their lives. To Facebook, your privacy is simply an asset. It can either sit by itself and make them nothing. Or it can be put to use by Facebook or third-party companies to make more money from the things that they can do with good data sources. To believe that a company like Facebook has your best interests at heart when it comes to privacy is not a good bet to make.

Would I Lie-ability To You?

In fact, the only thing that can make Facebook really sit up and pay attention is if that asset they have farmed out and working for them were to suddenly become a liability for some reason. Liabilities are a problem for companies because they are the exact opposite of making money. They cost money. Just as the grandmother in the above example sees an insolvent bank as a liability, so too would someone see a bad asset as a possible exposure.

Liabilities are a problem. Anything that can be an exposure is an issue for company, especially one with investors that like to get dividends. Any reduction in profit equals a loss. Liabilities on a balance sheet are giant red flags for anyone taking a close look at the operations of a business.

Turning Facebook’s data assets into a liability is the only way to make them sit up and realize that what they’re doing is wrong. Selling access to our data to anyone that wants it is a horrible idea. But it won’t stop until there is some way to make them pay through he nose for screwing up. Up until this year, that was a long shot at best. Most fines were in the thousands of dollars range, whereas most companies would pay millions for access to data. A carefully crafted statement admitting no fault after the exposure was uncovered means that Facebook and the offending company get away without a black mark and get to pocket all their gains.

The European GDPR law is a great step in the right direction. It clearly spells out what has to happen to keep a person’s data safe. That eliminates wiggle room in the laws. It also puts a stiff fine in place to ensure that any violations can be compounded quickly to drain a company and turn data into a liability instead of an asset. There are moves in the US to introduce legislation similar to GDPR, either at the federal level or in individual states like California, the location of Facebook’s headquarters.

That’s not to say that these laws are going to get it right every time. There are people out there that live to find ways to turn liabilities into assets. They want to find ways around the laws and make it so that they can continue to take their assets and make money from them even if the possibility of exposure is high. It’s one thing when that exposure is the money of people that invested in them. It’s another thing entirely when it’s personally identifiable information (PII) or protected information about people. We’re not imaginary money. We live and breath and exist long past losses. And trying to get our life back on track after an exposure is not easy for sure.


Tom’s Take

If I sound grumpy, it’s because I am tired of this mess. When I was researching my discussion for the Gestalt IT Rundown I simply Googled “Facebook data breach 2018” looking for examples that weren’t Cambridge Analytica. The number was more than it should have been. We cry about Target and Equifax and many other exposures that have happened in the last five years, but we also punish those companies by not doing business with them or moving our information elsewhere. Facebook has everyone hooked. We share photos on Facebook. We RSVP to events on Facebook. And we talk to people on Facebook as much or more than we do on the phone. That kind of reach requires a company to be more careful with who has access to our data. And if the solution is building the world’s biggest mattress to keep it all safe put me down for a set of box springs.

 

Some Random Thoughts From Security Field Day

I’m spending the week in some great company at Security Field Day with awesome people. They’re really making me think about security in some different ways. Between our conversations going to the presentations and the discussions we’re having after hours, I’m starting to see some things that I didn’t notice before.

  • Security is a hard thing to get into because it’s so different everywhere. Where everyone just sees one big security community, it is in fact a large collection of small communities. Thinking that there is just one security community would be much more like thinking enterprise networking, wireless networking, and service provider networking are the same space. They may all deal with packets flying across the wires but they are very different under the hood. Security is a lot of various communities with the name in common.
  • Security isn’t about tools. It’s not about software or hardware or a product you can buy. It’s about thinking differently. It’s about looking at the world through a different lens. How to protect something. How to attack something. How to figure all of that out. That’s not something you learn from a book or a course. It’s a way of adjusting your thinking to look at problems in a different way. It’s not unlike being in an escape room. Don’t look at the objects like you normally would. Instead, think about them with unique combinations that get you somewhere different than where you thought you needed to be.
  • Security is one of the only IT disciplines where failure is an acceptable outcome. If we can’t install a router or a wireless access point, it’s a bad job. However, in security if you fail to access something that should have been secured it was a success. That can lead to some very interesting situations that you can find yourself in. It’s important to realize that you also have to properly document your “failure” so people know what you tried to do to get there. Otherwise your success may just be a lack of proper failure.

Tom’s Take

I’m going to have some more thoughts from Security Field Day coming up another time. There’s just too much to digest at one time. Stay tuned for some more great discussions and highlights of my first real foray in the security community!

What Makes a Security Company?

When you think of a “security” company, what comes to mind? Is it a software house making leaps in technology to save us from DDoS attacks or malicious actors? Maybe it’s a company that makes firewalls or intrusion detection systems that stand guard to keep the bad people out of places they aren’t supposed to be. Or maybe it’s something else entirely.

Tradition Since Twenty Minutes Ago

What comes to mind when you think of a traditional security company? What kinds of technology do they make? Maybe it’s a firewall. Maybe it’s an anti-virus program. Or maybe it’s something else that you’ve never thought of.

Is a lock company like Schlage a security company? Perhaps they aren’t a “traditional” IT security company but you can guarantee that you’ve seen their products protecting data centers and IDF closets. What about a Halon system manufacturer? They may not be a first thought for security, but you can believe that a fire in your data center is going cause security issues. Also, I remember that I learned more about Halon and wet/dry pipe fire sprinkler systems from my CISSP study than anywhere else.

The problem with classifying security companies as “traditional” or “non-traditional” is that it doesn’t reflect the ways that security can move and change over the course of time. Even for something as cut-and-dried as anti-virus, tradition doesn’t mean a lot. Symantec is a traditional AV vendor according to most people. But the product that used to be called Norton Antivirus and the product suite that now includes is are worlds apart in functionality. Even though Symantec is “traditional”, what they do isn’t. And when you look at companies that are doing more advanced threat protection mechanisms like deception-based security or using AI and ML to detect patterns, the lines blur considerably.

But, it doesn’t obviate the fact that Symantec is a security company. Likewise, a company can be a security company even if they security isn’t their main focus. Like the Schlage example above, you can have security aspects to your business model without being totally and completely focused on security. And there’s no bigger example of this than a company like Cisco.

A Bridge Not Far Enough?

Cisco is a networking company right? Or are they a server company now? Maybe they’re a wireless company? Or do they do cloud now? There are many aspects to their business models, but very few people think of them as a security company. Even though they have firewalls, identity management, mobile security, Malware protection, VPN products, Email and Web Security, DNS Protection, and even Threat Detection. Does that mean they aren’t really a security company?

It could be rightfully pointed out that Cisco isn’t a security company because many of these technologies they have were purchased over the years from other companies. But does that mean that their solutions aren’t useful or maintained? As I was a doing research for this point, a friend pointed out the story of Cisco MARS and how it was purchased and ultimately retired by Cisco. However, the Cisco acquisition of Protego that netted them MARS happened in 2004. The EOL announcement was in 2011, and the final end-of-support was in 2016. Twelve years is a pretty decent lifetime for any security product.

The other argument is that Cisco doesn’t have a solid security portfolio because they have trouble integrating their products together. A common criticism of large companies like Cisco or Dell EMC is that it is too difficult to integrate their products together. This is especially true in situations where the technologies were acquired over time, just like Cisco.

However, is the converse true? Are standalone products easier to integrate? Is is more simple to take solutions from six different companies and integrate them together in some fashion? I’d be willing to be that outside of robust API support, most people will find that integrating security products from different vendors is as difficult (if not more so) than integrating products from one vendor. Does Cisco have a perfect integration solution? No, they don’t. But why should they? Why should it be expected that companies that acquire solutions immediate burn cycles to make everything integrate seamlessly. Sure, that’s on the roadmap. But integrations with other products is on everyone’s road map.

The last argument that I heard in my research is that Cisco isn’t a security company because they don’t focus on it. They’re a networking (or wireless or server) company. Yet, when you look at the number of people that Cisco has working in a specific business unit on a product, it can often be higher headcount that some independent firms have working on their solutions. Does that mean that Cisco doesn’t know what they’re doing? Or does it mean that individual organizations can have multiple focuses? That’s a question for the customers to answer.


Tom’s Take

I take issue with a definition of “traditional” versus non-traditional. For the reason that Apple is a traditional computer company and so is Wang Computers. Guess which one is still making computers? And even in the case of Apple, you could argue that their main line-of-business is mobile devices now. But, does anyone dispute Apple’s ability to make a laptop? Would a company that does nothing but make laptops be a “better” computer company? The trap of labels like that is that it ignores a significant amount of investment in business at the expense of a quick and easy label. What makes a company a computer company or a security company isn’t how they label themselves. It’s what they do with the technology they have.