You Down with IoT? You Better Be!

Did you see the big announcement from AWS re:Invent that Amazon has a preview of a Private 5G service? It probably got buried under the 200 other announcements that came out on so many other things so I’ll forgive you for missing it. Especially if you also managed to miss a few of the “hot takes” that mentioned how Amazon was trying to become a cellular provider. If I rolled my eyes any harder I might have caused permanent damage. Leave it to the professionals to screw up what seems to be the most cut-and-dried case of not reading the room.

Amazon doesn’t care about providing mobile service. How in the hell did we already forget about the Amazon (dumpster) Fire Phone? Amazon isn’t trying to supplant AT&T or Verizon. They are trying to provide additional connectivity for their IoT devices. It’s about as clear as it can get.

Remember all the flap about Amazon Sidewalk? How IoT devices were going to use 900 MHz to connect to each other if they had no other connectivity? Well, now it doesn’t matter because as long as one speaker or doorbell has a SIM slot for a private 5G or CBRS node then everything else can connect to it too. Who’s to say they aren’t going to start putting those slots in everything going forward? I’d be willing to bet the farm that they are. It’s cheap compared to upgrading everything to use 802.11ax radios or 6 GHz technology. And the benefits for Amazon are legion.

It’s Your Density

Have you ever designed a wireless network for a high-density deployment? Like a stadium or a lecture hall? The needs of your infrastructure look radically different compared to your home. You’re not planning for a couple of devices in a few dozen square feet. You’re thinking about dozens or even hundreds of devices in the most cramped space possible. To say that a stadium is one of the most hostile environments out there is underselling both the rabid loyalty of your average fan and the wireless airspace they’re using to post about how the other team sucks.

You know who does have a lot of experience designing high density deployments with hundreds of devices? Cellular and mobile providers. That’s because those devices were designed from the start to be more agreeable to hostile environments and have higher density deployments. Anyone that can think back to the halcyon days of 3G and how crazy it got when you went to Cisco Live and had no cell coverage in the hotel until you got to the wireless network in the convention center may disagree with me. But that exact scenario is why providers started focusing more on the number of deployed devices instead of the total throughput of the tower. It was more important in the long run to get devices connected at lower data rates than it was to pump up the wattage and get a few devices to shine at the expense of all the other ones that couldn’t get connected.

In today’s 5G landscape, it’s all about the clients. High density and good throughput. And that’s for devices with a human attached to them. Sure, we all carry a mobile phone and a laptop and maybe a tablet that are all connected to the Wi-Fi network. With IoT, the game changes significantly. Even in your consumer-focused IoT landscape you can probably think of ten devices around you right now that are connected to the network, from garage door openers to thermostats to light switches or light bulbs.

IoT at Work

In the enterprise it’s going to get crazy with industrial and operational IoT. Every building is going to have sensors packed all over the place. Temperature, humidity, occupancy, and more are going to be little tags on the walls sampling data and feeding it back to the system dashboard. Every piece of equipment you use on a factory floor is going to be connected, either by default with upgrade kits or with add-on networking gear that provides an interface to the control system. If it can talk to the Internet it’s going to be enabled to do it. And that’s going to crush your average Wi-Fi network unless you build it like a stadium.

On the other hand, private 5G and private LTE deployments are built for this scale. And because they’re lightly regulated compared to full-on provider setups you can do them easily without causing interference. As long as someone that owns a license for your frequency isn’t nearby you can just set things up and get moving. And as soon as you order the devices that have SIM slots you can plug in your cards and off you go!

I wouldn’t be shocked to see Amazon start offering a “new” lineup of enterprise-ready IoT devices with pre-installed SIMs for Amazon Private 5G service. Just buy these infrastructure devices from us and click the button on your AWS dashboard and you can have on-prem 5G. Hell, call it Network Outpost or something. Just install it and pay us and we’ll take care of the rest for you. And as soon as they get you locked in to their services they’ve got you hooked. Because if you’re already using those devices with 5G, why would you want to go through the pain on configuring them for the Wi-Fi?

This isn’t a play for consumers. Configuring a consumer-grade Wi-Fi router from a big box store is one thing. Private 5G is beyond most people, even if it’s a managed service. It also offers no advantages for Amazon. Because private 5G in the consumer space is just like hardware sales. Customers aren’t going to buy features as much as they’re shopping for the lowest sticker price. In the enterprise, Amazon can attach private 5G service to existing cloud spend and make a fortune while at the same time ensuring their IoT devices are connected at all times and possibly even streaming telemetry and collecting anonymized data, depending on how the operations contracts are written. But that’s a whole different mess of data privacy.


Tom’s Take

I’ve said it before but I’ll repeat it until we finally get the picture: IoT and 5G are now joined at the hip and will continue to grow together in the enterprise. Anyone out there that sees IoT as a hobby for home automation or sees 5G as a mere mobile phone feature will be enjoying their Betamax movies along with web apps on their mobile phones. This is bigger than the consumer space. The number of companies that are jumping into the private 5G arena should prove the smoke is hiding a fire that can signal that Gondor is calling for aid. It’s time you get on board with IoT and 5G and see that. The future isn’t a thick client with a Wi-Fi stack that you need to configure. It’s a small sensor with a SIM slot running on a private network someone else fixes for you. Are you down with that?

Private 5G Needs Complexity To Thrive

I know we talk about the subject of private 5G a lot in the industry but there are more players coming out every day looking to add their voice to the growing supporters of these solutions. And despite the fact that we tend to see 5G and Wi-Fi technologies as ships in the night this discussion isn’t going to go away any time soon. In part it’s because decision makers aren’t quite savvy enough to distinguish between the bands, thinking all wireless communications are pretty much the same.

I think we’re not going to see much overlap between these two technologies. But the reasons why aren’t quite what you might think.

Walking Workforces

Working from anywhere other than the traditional office is here to stay. Every major Silicon Valley company has looked at the cost benefit analysis and decided to let workers do their thing from where they live. How can I tell it’s permanent? Because they’re reducing salaries for those that choose to stay away from the Bay Area. That carrot is pretty enticing and for the companies to say that it’s not on the table for remote work going forward means they have no incentive to make people want to move to work from an office.

Mobile workers don’t care about how they connect. As long as they can get online they are able to get things done. They are the prime use case for 5G and Private 5G deployments. Who cares about the Wi-Fi at a coffee shop if you’ve got fast connectivity built in to your mobile phone or tablet? Moreover, I can also see a few of the more heavily regulated companies requiring you to use a 5G uplink to connect to sensitive data though a VPN or other technology. It eliminates some of the issues with wireless protection methods and ensures that no one can easily snoop on what you’re sending.

Mobile workers will start to demand 5G in their devices. It’s a no-brainer for it to be in the phone and the tablet. As laptops go it’s a smart decision at some point, provided enough people have swapped over to using tablets by then. I use my laptop every day when I work but I’m finding myself turning to my iPad more and more. Not for any magical reason but because it’s convenient if I want to work from somewhere other than my desk. I think that when laptops hit a wall from a performance standpoint you’re going to see a lot of manufacturers start to include 5G as a connection option to lure people back to them instead of abandoning them to the big tablet competition.

However, 5G is really only a killer technology for these more complex devices. The cost of a 5G radio isn’t inconsequential to the overall cost of a device. After all, Apple raised the price of their iPad when they included a 5G radio, didn’t they? You could argue that they didn’t when they upgraded the iPhone to a 5G chipset but the cellular technology is much more integral to the iPhone than the iPad. As companies examine how they are going to move forward with their radio technology it only makes sense to put the 5G radios in things that have ample space, appropriate power, and the ability to recover the costs of including the chips. It’s going to be much more powerful but it’s also going to be a bigger portion of the bill of materials for the device. Higher selling prices and higher margins are the order of the day in that market.

Reassuringly Expensive IoT

One of the drivers for private 5G that I’ve heard of recently is the drive to have IoT sensors connected over the protocol. The thinking goes that the number of devices that are going to be deployed it going to create a significant amount of traffic in a dense area that is going to require the controls present in 5G to ensure they aren’t creating issues. I would tend to agree but with a huge caveat.

The IoT sensors that people are talking about here aren’t the ones that you might think of in the consumer space. For whatever reason people tend to assume IoT is a thermostat or a small device that does simple work. That’s not the case here. These IoT devices aren’t things that you’re going to be buying one or two at a time. They are sensors connected to a larger system. Think HVAC relays and probes. Think lighting sensors or other environmental tech. You know what comes along with that kind of hardware? Monitoring. Maintenance. Subscription costs.

The IoT that is going to take advantage of private 5G isn’t something you’re going to be deploying yourself. Instead, it’s going to be something that you partner with another organization to deploy. You might “own” the tech in the sense that you control the data but you aren’t going to be the one going out to Best Buy or Tech Data to order a spare. Instead, you’re going to pay someone to deploy it and it when it goes wrong. So how does that differ from the IoT thermostat that comes to mind? Price. Those sensors are several hundred dollars each. You’re paying for the technology included in them with that monthly fee to monitor and maintain them. They will talk to the radio station in the building or somewhere nearby and relay that data back to your dashboard. Perhaps it’s on-site or, more likely, in a cloud instance somewhere. All those fees mean that the devices become more complex and can absorb the cost of more complicated radio technology.

What About Wireless?

Remember when wireless was something cool that you had to show off to people that bought a brand new laptop? Or the thrill of seeing your first iPhone connect to attwifi at Starbucks instead of using that data plan you paid so dearly to get? Wireless isn’t cool any more. Yes, it’s faster. Yes, it is the new edge of our world. But it’s not cool. In the same way that Ethernet isn’t cool. Or web browsers aren’t cool. Or the internal combustion engine isn’t cool. Wi-Fi isn’t cool any more because it is necessary. You couldn’t open an office today without having some form of wireless communications. Even if you tried I’m sure that someone would hop over to the nearest big box store and buy a consumer-grade router to get wireless working before the paint was even dry on the walls.

We shouldn’t think about private 5G replacing Wi-Fi because it never will. There will be use cases where 5G makes much more sense, like in high-density deployments or in areas were the contention in the wireless spectrum is just too great to make effective use of it. However, not deploying Wi-Fi in favor of deploying private 5G is a mistake. Wireless is the perfect “set it and forget it” technology. Provide an SSID for people to connect to and then let them go crazy. Public venues are going to rely on Wi-Fi for the rest of time. These places don’t have the kind of staff necessary to make private 5G economical in the long run.

Instead, think of private 5G deployments more like the way that Wi-Fi used to be. It’s an option for devices that need to be managed and controlled by the organization. They need to be provisioned. They need to consume cycles to operate properly. They need to be owned by the company and not the employee. Private 5G is more of a play for infrastructure. Wi-Fi is the default medium given the wide adoption it has today. It may not be the coolest way to connect to the network but it’s the one you can be sure is up and running without the need for the IT department to come down and make it work for you.


Tom’s Take

I’ll admit that the idea of private 5G makes me smile some days. I wish I had some kind of base station here at my house to counteract the horrible reception that I get. However, as long as my Internet connection is stable I have enough wireless coverage in the house to make the devices I have work properly. Private 5G isn’t something that is going to displace the installed base of Wi-Fi devices out there. With the amount of management that 5G requires in devices you’re not going to see a cheap or simple method to deploying it appear any time soon. The pie-in-the-sky vision of having pervasive low power deployments in cheap devices is not going to be realistic on the near future horizon. Instead, think of private 5G as something that you need to use when your other methods won’t work or when someone you are partnering with to deploy new technology requires it. That way you won’t be caught off-guard when the complexity of the technology comes to play.

Networking Isn’t Just A Tool

BlueFiberOptic

It’s another event week for me at Networking Field Day 25 and I’m continually impressed with the level of technology that we see in the networking world. I think back to how things looked when I was still deploying the networks I built and it seems like a hundred years ago instead of a decade. More software driving better outcomes for users. Easier collection of analytics and telemetry to understand how to tune things and make them faster and better. And, honestly, more need for advanced technical people to tune everything and make it work better.

When you consider that the last year has been done over the Internet for most of us it gets even crazier. Meetings, software productivity, and even food delivery has been driven by apps running in the cloud that we communicate with over the Internet. I can remember a time when I didn’t have a mobile phone in my pocket with Internet capabilities. Today I can barely imagine not having it at my fingertips. When the network is not doing things the way we want we quickly find out how dependent we’ve become on our connectivity.

Generational Differences

My children are amazed that dial-up networking used to be a thing. I remember rebuilding Winsock stacks in Windows 98 for Gateway in order to troubleshoot 56k modems not connecting to AOL at the beginning of the millennium. Today my cable modem gets me where I need to go when I’m home and my 5G phone does the heavy lifting for me when I’m on the road. Need to look up a price on something? Or know the temperature? Or just listen to a song you remember from your childhood? It’s all at your fingertips. I can’t imagine that kind of connectivity back when it took a minute or two for the phone to scream out the song of Compuserve at my house.

My in-laws have a DSL connection that suits them just fine for their needs. It’s painfully slow for me. I couldn’t live with their slow connection and inability to run multiple things at once, like video streaming and Zoom meetings at the same time. They don’t live very far from me either. The difference in their connectivity is shocking. And yet, we just expect to be able to get online any time we want.

Remember ATTWIFI at Starbucks? Remember when your iPhone would automatically connect to give you better speeds when your 3G was overwhelmed? I can recall getting into a situation where Cisco Live in Las Vegas made my phone unusable outside of the conference. Today that situation would be unacceptable. And we’re barely a decade removed from those days.

As I keep seeing technology moving along even faster, including things like silicon photonics promising speeds north of hundreds of gigabits on the uplink side, I wonder how our next generation is going to feel about not being able to watch 8k TV shows in a self-driving car on-demand because there’s not enough bandwidth. I laugh when I remember the need to swap out DVDs on car trips so my eldest son could have entertainment. Today my youngest is happy to binge watch shows on Disney without interruption because of the networks we’ve built.

Creating Dependence

What we’ve built has created the world we live in. But we also have made it a world dependent on what we’ve built. I realized that months ago when my network connection kept going out during a winter storm. Without connectivity people feel lost. I had a hard time getting things done offline without being able to look up information or get emails sent out. My kids are beside themselves without access to anything online. Their board games were boring. They couldn’t play video games offline because all the cool features were on the Internet. By the time the connection came back it was almost Lord of the Flies around here as the minutes ticked on.

We no longer have the luxury of shrugging our shoulders when the network goes down. It needs to be treated no differently than the electricity or water in a building. If we neglect it we risk alienating our users and stakeholders. We need to be firm when we need new equipment or better designs to ensure resilience. Instead of making everything cheap and barely usable we need to remind everyone how reliant they’ve become on the network. If it’s necessary it is absolutely worth investing in. Moving to the cloud or becoming more and more reliant on SaaS applications just reinforces those decisions.


Tom’s Take

Either the network is just a tool that doesn’t need investment or it’s a necessary part of your work that needs to be treated as such. While I would never suggest unplugging anything to prove a point I think you can point to specific outages that would do the same thing without the chaos. Every time you tell your stakeholders they need to invest in better switches or new access points and they push back about costs or try to suggest a cheaper alternative, you need to stand firm. In a world where everyone is dependent on Internet connectivity for all manner of their lives you have to treat it as a necessity in every possible way. You can tell your stakeholders to spend their day working from their phone hotspot if they don’t believe you. It’ll be like taking a trip back to the early parts of the millennium when networks weren’t as important.

The Bane of Backwards Compatibility

I’m a huge fan of video games. I love playing them, especially on my old consoles from my formative years. The original Nintendo consoles were my childhood friends as much as anything else. By the time I graduated from high school, everyone had started moving toward the Sony Playstation. I didn’t end up buying into that ecosystem as I started college. Instead, I just waited for my brother to pick up a new console and give me his old one.

This meant I was always behind the curve on getting to play the latest games. I was fine with that, since the games I wanted to play were on the old console. The new one didn’t have anything that interested me. And by the time the games that I wanted to play did come out it wouldn’t be long until my brother got a new one anyway. But one thing I kept hearing was that the Playstation was backwards compatible with the old generation of games. I could buy a current console and play most of the older games on it. I wondered how they managed to pull that off since Nintendo never did.

When I was older, I did some research into how they managed to build backwards compatibility into the old consoles. I always assumed it was some kind of translation engine or enhanced capabilities. Instead, I found out it was something much less complicated. For the PS2, the same controller chip from the PS1 was used, which ensured backwards compatibility. For the PS3, they essentially built the guts of a PS2 into the main board. It was about as elegant as you could get. However, later in the life of those consoles, system redesigns made them less compatible. Turns out that it isn’t easy to create backwards compatibility when you redesign things to remove the extra hardware you added.

Bringing It Back To The Old School

Cool story, but what does it have to do with enterprise technology? Well, the odds are good that you’re about to fight a backwards compatibility nightmare on two fronts. The first is with WPA3, the newest security protocol from the Wi-Fi Alliance. WPA3 fixes a lot of holes that were present in the ancient WPA2 and includes options to protect public traffic and secure systems from race conditions and key exchange exploits. You’d think it was designed to be more secure and would take a long time to break right? Well, you’d be wrong. That’s because WPA3 was exploited last year thanks to a vulnerability in the WPA3-Transition mode designed to enhance backwards compatibility.

WPA3-Transition Mode is designed to keep people from needing to upgrade their wireless cards and client software in one fell swoop. It can configure a WPA3 SSID with the ability for WPA2 clients to connect to it without all the new enhanced requirements. Practically, it means you don’t have to run two separate SSIDs for all your devices as you move from older to newer. But practical doesn’t cover the fact that security vulnerabilities exist in the transition mechanism. Enterprising attackers can exploit the weaknesses in the transition setup to crack your security.

It’s not unlike the old vulnerabilities in WPA when it used TKIP. TKIP was found to have a vulnerability that allowed for exploiting. People were advised to upgrade to WPA-AES as soon as possible to prevent this. But if you enabled older non-AES capable clients to connect to your SSIDs for compatibility reasons you invalidated all that extra security. Because AES had to operate in TKIP mode to connect the TKIP clients. And because the newer clients were happy to use TKIP over AES you were stuck using a vulnerable mode. The only real solution was to have a WPA-AES SSID to connect to for your newer secure clients and leave a WPA-TKIP SSID active for the clients that had to use it until they could be upgraded.

4Gs for the Price of 5

The second major area where we’re going see issues with backwards compatibility is with 5G networking. We’re hearing about the move to using 5G everywhere. We’ve no doubt heard by now that 5G is going to replace enterprise wireless or change the way we connect to things. Honestly, I’m not surprised someone has tried to make the claim that 5G can make waffles and coffee yet. But 5G is rife with the same backwards compatibility issues present in enterprise wireless too.

5G is an evolution of the 4G standards. Phones issued today are going to have 4G and 5G radios and the base stations are going to mix the radio types to ensure those phones can connect. Just like any new technology, they’re going to maximize the connectivity of the existing infrastructure and hope that it’s enough to keep things running as they build out the new setup. But by running devices with two radios or having a better connection from the older devices, you’re going to set yourself up to have your new protocol inherently insecure thanks to vulnerabilities in the old versions. It’s already projected that governments are going to take advantage of this for a variety of purposes.

We find ourselves in the same boat as we do with WPA3. Because we have to ensure maximum compatibility, we make sacrifices. We keep two different versions running at the same time, which increases complexity. We even mark a lot of necessary security upgrades as optional in order to keep people from refusing to implement them or fall behind because they don’t understand them1.

The biggest failing for me is that we’re pushing for backwards compatibility and performance over security. We’re not willing to make the hard choices to reduce functionality in order to save our privacy and security. We want things to be backwards compatible so we can buy one device today and have it work on everything. We’ll just make the next one more secure. Or the one after that. Until we realize that we’re still running old 802.11 data rates in our newest protocols because no one bothered to remove them. We have to make hard choices sometimes and sacrifice some compatibility in order to ensure that we’re safe and secure with the newer technology.


Tom’s Take

Backwards compatibility is like the worst kind of nostalgia. I want the old thing but I want it on a new thing that runs faster. I want the glowing warmth of my youth but with the convenience of modern technology. It’s like buying an old sports car. Sure, you get all the look and feel of an old powerful engine. You also lose the safety features of the new body along with the comforts you’ve become accustomed to. You have to make a hard choice. Do you keep the old car original and lose out on what you like to get what you want? Or do you create some kind of hybrid that has exactly what you want and need but isn’t what you started with? It’s a tough choice to make. In the world of technology, there’s no right answer. But we need to remember that every compromise we make for performance can lead to compromises in security.


  1. I’m looking at you, OWE ↩︎

Will Spectrum Hunger Kill Weather Forecasting?

If you are a fan of the work we do each week with our Gestalt IT Rundown on Facebook, you probably saw a story in this week’s episode about the race for 5G spectrum causing some potential problems with weather forecasting. I didn’t have the time to dig into the details behind the story on that episode, so I wanted to take a few minutes and explain why it’s such a big deal.

First, you have to know that 5G (and many other) speeds are entirely dependent upon the amount of spectrum they can use to communicate. The more spectrum available to them, the more channels they have available to communicate. Which increases the speed they can exchange information and reduces the amount of interference between devices. Sounds simple right?

Except mobile devices aren’t the only things that are using the spectrum. We have all kinds of other devices out there that use radio waves to communicate. We’ve known for several years that there are a lot of devices in the 5 GHz spectrum used by 802.11 that interfere with wireless devices. Things like ISM radios for industrial and medical applications or government radar systems. The government has instituted many regulations in those frequency ranges to ensure that critical infrastructure isn’t interfered with.

When Nature Calls

However, sometimes you can’t regulate away interference. According to this Wired article the FCC, back in March, opened up auctions for the 24 GHz frequency band. This was over strenuous objections from NASA, NOAA, and the American Meteorological Society (AMS). Why is 24 GHz so important? Well, as it turns out, there’s a natural phenomenon that exists at that range.

Recall your kitchen microwave. How does it work? Basically, it uses microwave radiation to heat the water in the food you’re cooking. How does it do that? Turns out the natural frequency of water is 2.38 GHz. Now, thanks to the magic of math, 23.8 GHz is a multiple of that frequency. Which means that anything that broadcasts at 23.8 GHz will have issues with water, such as water in tree leaves or in water pipes.

So, why is NOAA and the AMS freaking out about auctioning off spectrum in the 23.8 GHz range? Because anything broadcasting in that range is not only going to have issues with water interference but it’s also going to look like water to sensitive equipment. That means that orbiting weather satellites that use microwaves to detect water vapor in the air that reacts to 23.8 GHz are going to encounter co-channel interference from 5G radio sources.

You might say to yourself, “So what? It’s just a little buzz, right?” Well, except that that little buzz creates interference in the data being fed into forecast prediction models. Those models are the basis for the weather forecasts we have today. And if you haven’t noticed the reliability of our long range forecasts has been steadily improving for the past 30 years or so. Today’s 7-day forecasts are almost 80% accurate, which is pretty good compared to how bad things were in the 80s, where you could only guarantee 80% accuracy from a 3-day forecast.

Guess what? NOAA says that if the 24 GHz spectrum gets auctioned off for 5G use, we could see the accuracy of our forecasting regress almost 30%, which would push our models back to where they were in the 80s. Now, for those of you that live in places that are fortunate enough to only get sun and the occasional rain shower that doesn’t sound too bad, right? Just make sure to pack an umbrella. But for those that live in places where there is a significant chance for severe weather, it’s a bit more problematic.

I live in Oklahoma. We’re right in the middle of Tornado Alley. In the spring between April 1 and June 1 my state becomes a fun place full of nasty weather that can destroy homes and cause widespread devastation. It’s never boring for sure. But in the last 30 years we’ve managed to go from being able to give people a few minutes warning about an impending tornado to being able to issue Potential Dangerous Situation (PDS) Tornado Watches up to 48 hours in advance. While a PDS Tornado Watch doesn’t mean that we’re going to get one in a specific area, it does mean that you need to be on the lookout for something that day. It gives enough warning to make sure you’re not going to get caught flat footed when things get nasty.

Yes Man

The easiest way to avoid this problem is probably the least likely to happen. The FCC needs to restrict the auction of that spectrum range identified by NOAA and NASA until it can be proven that there won’t be any interference or that the forecast accuracy isn’t going to be impacted. 5G rollouts are still far enough in the future that leaving a part of the spectrum out of the equation isn’t going to cause huge issues for the next few years. But if we have to start creating rules for how we have to change power settings for device manufacturers or create updates for fixed-position sensors and old satellites we’re going to have a lot more issues down the road than just slightly slow mobile devices.

The reason why this is hard is because an FCC focused on opening things up for corporations doesn’t care about the forecast accuracy of a farmer in Iowa. They care about money. They care about progress. And ultimately they care about looking good over saving lives. There’s no guarantee that reducing forecast accuracy will impact life saving, but the odds are that better forecasts will help people make better decisions. And ultimately, when you boil it down to the actual choices, the appearance is that the FCC is picking money over lives. And that’s a pretty easy choice for most people to make.


Tom’s Take

If I’m a bit passionate about weather tech, it’s because I live in one of the most weather-active places on the planet. The National Severe Storms Laboratory and the National Weather Center are both about 5-6 miles from my house. I see the use of this tech every day. And I know that it saves lives. It’s saved lives for years for people that need to know

Generation Lost

I’m not trying to cause a big sensation (talking about my generation) – The Who

GenTiltedNaming products is an art form.  When you let the technical engineering staff figure out what to call something, you end up with a model number like X440 or 8086.  When the marketing people get involved at first, you tend to get more order in the naming of things, usually in a series like the 6500 series or the MX series.  The idea that you can easily identify a product’s specs based on its name or a model number is nice for those that try to figure out which widget to use.  However, that’s all changing.

It started with mobile telephones.  Cellular technology has been around in identifiable form since the late 1970s.  The original analog signals worked on specific frequencies and didn’t have great coverage.  It wasn’t until the second generation of this technology moved entirely to digital transmission with superior encoding that the technology really started to take off.  In order to differentiate this new technology from the older analog version, many people made sure to market it as “second generation”, often shortening this to “2G” to save syllables.  When it came time to introduce a successor to the second generation personal carrier service (PCS) systems, many carriers started marketing their offerings withe moniker of “3G”, skipping straight past the idea of third generation offering in favor of the catchier marketing term.  AT&T especially loved touting the call quality and data transmission rate of 3G in advertising.  The 3G campaigns were so successful that when the successor to 3G was being decided, many companies started trying to market their incremental improvements as “4G” to get consumers to adopt them quickly.

Famously, the incremental improvement to high speed packet access (HSPA) that was being deployed en masse before the adoption of Long Term Evolution (LTE) as the official standard was known as high speed packet downlink access (HSPDA).  AT&T petitioned Apple to allow their carrier badge on the iPhone to say “4G” when HSPDA was active.  Even though speeds weren’t nearly as fast as the true 4G LTE standard, AT&T wanted a bit of marketing clout with customers over their Verizon rivals.  When the third generation iPad was released with a true LTE radio later on, Apple made sure to use the “LTE” carrier badge for it.  When the iOS 5 software release came out, Apple finally acquiesced to AT&T’s demands and rebranded the HSPDA network to be “4G” with a carrier update.  In fact, to this day my iPhone 4S still tells me I’m on 4G no matter where I am.  Only when I drop down to 2G does it say anything different.

The fact that we have started referring to carrier standards a “xG” something means the marketing is working.  And when marketing works, you naturally have to copy it in other fields.  The two most recent entries in the Generation Marketing contest come from Broadcom and Brocade.  Broadcom has started marketing their 802.11ac chipsets as “5G wireless.”  It’s somewhat accurate when you consider the original 802.11 standard through 802.11b, 802.11g, 802.11n, and now 802.11ac.  However, most wireless professionals see this more as an attempt to cash in on the current market trend of “G” naming rather than showing true differentiation.  In Brocade’s case, they recently changed the name of their 16G fibre channel solution to “Gen 5” in an attempt to shift the marketing message away from a pure speed measurement (16 gigabit) especially when starting to put it up against the coming 40 gigabit fibre channel over Ethernet (FCoE) offerings coming from their competitor at Cisco.

In both of these cases, the shift has moved away from strict protocol references or speed ratings.  That’s not necessarily a bad thing.  However, the shift to naming it “something G” reeks quite frankly.  Are we as consumers and purchases so jaded by the idea of 3G/4G/5G that we don’t get any other marketing campaigns?  What if they’d call it Revision Five or Fifth Iteration instead?  Doesn’t that convey the same point?  Perhaps it does, but I doubt more than an handful of CxO type people know what iteration means without help from a pocket dictionary.  Those same CxOs know what 4G/5G mean because they can look down at their phone and see it.  More Gs are better, right?

Generational naming should only be used in the broadest sense of the idea.  It should only be taken seriously when more than one company uses it.  Is Aruba going to jump on the 5G wireless bandwagon?  Will EMC release a 6G FC array?  If you’re shaking your head in answer to these questions, you probably aren’t the only one.  Also of note in this discussion – What determines a generation?  IT people have trouble keeping track of what constitutes the difference between a major version change and a point release update.  Why did 3 features cause this to be software version 8.0 but the 97 new features in the last version only made it go from 7.0 to 7.5?  Also, what’s to say that a company doesn’t just skip over a generation?  Why was HSPDA not good enough to be 4G?  Because the ITU said it was just an iteration of 3G and not truly a new generation.  How many companies would have looked at the advantage of jumping straight to 5G by “counting” HSPDA as the fourth generation absent oversight from the ITU?


Tom’s Take

My mom always told me to “call a spade a spade.”  I don’t like the idea of randomly changing the name of something just to give it a competitive edge.  Fibre channel has made it this far as 2 gig, 4 gig, and 8 gig.  Why the sudden shift away from 16 gig?  Especially if you’re going to have to say it runs at 16 gig so people will know what you’re talking about?  Is it a smoke-and-mirrors play?  Why does Broadcom insist on naming their wireless 5G?  802.11a/b/g/n has worked just fine up to now.  Is this just an attempt to confuse the consumer?  We may never know.  What we need to do in the meantime is consider holding feet to the fire and ensuring that consumers and purchasers ensure that this current naming “generation” gets lost.