The Death of TRILL

wasteland_large

Networking has come a long way in the last few years. We’ve realized that hardware and ASICs aren’t the constant that we could rely on to make decisions in the next three to five years. We’ve thrown in with software and the quick development cycles that allow us to iterate and roll out new features weekly or even daily. But the hardware versus software battle has played out a little differently than we all expected. And the primary casualty of that battle was TRILL.

Symbiotic Relationship

Transparent Interconnection of Lots of Links (TRILL) was proposed as a solution to the complexity of spanning tree. Radia Perlman realized that her bridging loop solution wouldn’t scale in modern networks. So she worked with the IEEE to solve the problem with TRILL. We also received Shortest Path Bridging (SPB) along the way as an alternative solution to the layer 2 issues with spanning tree. The motive was sound, but the industry has rejected the premise entirely.

Large layer 2 networks have all kinds of issues. ARP traffic, broadcast amplification, and many other numerous issues plague layer 2 when it tries to scale to multiple hundreds or a few thousand nodes. The general rule of thumb is that layer 2 broadcast networks should never get larger than 250-500 nodes lest problems start occurring. And in theory that works rather well. But in practice we have issues at the software level.

Applications are inherently complicated. Software written in the pre-Netflix era of public cloud adoption doesn’t like it when the underlay changes. So things like IP addresses and ARP entries were assumed to be static. If those data points change you have chaos in the software. That’s why we have vMotion.

At the core, vMotion is a way for software to mitigate hardware instability. As I outlined previously, we’ve been fixing hardware with software for a while now. vMotion could ensure that applications behaved properly when they needed to be moved to a different server or even a different data center. But they also required the network to be flat to overcome limitations in things like ARP or IP. And so we went on a merry journey of making data centers as flat as possible.

The problem came when we realized that data centers could only be so flat before they collapsed in on themselves. ARP and spanning tree limited the amount of traffic in layer 2 and those limits were impossible to overcome. Loops had to be prevented, yet the simplest solution disabled bandwidth needed to make things run smoothly. That caused IEEE and IETF to come up with their layer 2 solutions that used CLNS to solve loops. And it was a great idea in theory.

The Joining

In reality, hardware can’t be spun that fast. TRILL was used as a reference platform for proprietary protocols like FabricPath and VCS. All the important things were there but they were locked into hardware that couldn’t be easily integrated into other solutions. We found ourselves solving problem after problem in hardware.

Users became fed up. They started exploring other options. They finally decided that hardware wasn’t the answer. And so they looked to software. And that’s where we started seeing the emergence of overlay networking. Protocols like VXLAN and NV-GRE emerged to tunnel layer 2 packets over layer 3 networks. As Ivan Pepelnjak is fond of saying layer 3 transport solves all of the issues with scaling. And even the most unruly application behaves when it thinks everything is running on layer 2.

Protocols like VXLAN solved an immediate need. They removed limitations in hardware. Tunnels and fabrics used novel software approaches to solve insurmountable hardware problems. An elegant solution for a thorny problem. Now, instead of waiting for a new hardware spin to fix scaling issues, customers could deploy solutions to fix the issues inherent in hardware on their own schedule.

This is the moment where software defined networking (SDN) took hold of the market. Not when words like automation and orchestration started being thrown about. No, SDN became a real thing when it enabled customers to solve problems without buying more physical devices.


Tom’s Take

Looking back, we realize now that building large layer 2 networks wasn’t the best idea. We know that layer 3 scales much better. Given the number of providers and end users running BGP to top-of-rack (ToR) switches, it would seem that layer 3 scales much better. It took us too long to figure out that the best solution to a problem sometimes takes a bit of thought to implement.

Virtualization is always going to be limited by the infrastructure it’s running on. Applications are only as smart as the programmer. But we’ve reached the point where developers aren’t counting on having access to layer 2 protocols that solve stupid decision making. Instead, we have to understand that the most resilient way to fix problems is in the software. Whether that’s VXLAN, NV-GRE, or a real dev team not relying on the network to solve bad design decisions.

Advertisements