Networking Grows To Invisibility

Cat5

Networking is done. The way you have done things before is finished. The writing has been on the wall for quite a while now. But it’s going to be a good thing.

The Old Standard

Networking purchase models look much different today than they have in the past. Enterprises no longer buy a switch or a router. Instead, they buy solution packages. The minimum purchase unit is a networking pod or rack. Perhaps your proof-of-concept minimum is a leaf-spine of no less than 3 switches. Firewalls are purchased in pairs. Nowhere in networking is something simple any longer.

With the advent of software, even the deployment of these devices is different. Automation and orchestration systems provide provisioning as the devices are brought online. Network Monitoring Systems ensure the devices are operating correctly via API call instead of relying on SNMP. Analytics and telemetry systems can pull statistics on the fly and create datasets that give you insight into all manner of network traffic. The intelligence built into the platform supporting the hardware is more apparent than ever before.

Networking is no longer about fast connectivity speed. Instead, networking is about stability. Providing a transport network that stays healthy instead of growing by leaps and bounds every few years. Organizations looking to model their IT departments after service providers and cloud providers care more about having a reliable system than the most cutting edge technology.

This is nothing new in IT. Both storage and virtualization have moved in this direction for a while. Hardware wizardry has been replaced by software intelligence. Custom hardware is now merchant-based and easy to replace and build. The expertise in deployment and operations has more to do with integration and architecture than in simple day-to-day setup.

The New Normal

Where does that leave networkers? Are we a dying breed, soon to join the Unix admins of the word and telco experts on a beach in retirement? The reality is that things aren’t as dire for us as one might believe.

It is true that we have shifted our thinking away from operations and more toward system building. Rather than worry if the switch ports have been provisioned, we instead look at creating resilient constructs that can survive outages and traffic spikes. Networks are becoming the utility service we’ve always hoped they would be.

This is not the end. It’s the beginning. As networks join storage and compute as utilities in the data center, the responsibilities for our sphere of wizardry are significantly reduced. Rather than spending our time solving crazy user or developer problems, we can instead focus on the key points of stability and availability.

This is going to be a huge shift for the consumers of IT as well. As cloud models have already shown us, people really want to get their IT on their schedules. They want to “buy” storage and networking when it’s needed without interruption. Creating a utility resource is the best way to accomplish that. No longer will the blame for delays be laid at the feet of IT.

But at the same time, the safety net of IT will be gone as well. Unlike Chief Engineer Scott, IT can’t save the day when a developer needs to solve a problem outside of their development environment. Things like First Hop Reachability Protocols (FHRP), multipathing, and even vMotion contribute to bad developer behavior. Without these being available in a utility IT setup, application writers are going to have to solve their own problems with their own tools. While the network team will end up being leaner and smarter, it’s going to make everything run much more smoothly.


Tom’s Take

I live for the day when networking is no different than the electrical grid. I would rather have a “dumb” network that provides connectivity rather than hoping against hope that my “smart” network has all the tricks it needs to solve everyone’s problem. When the simplicity of the network is the feature and we don’t solve problems outside the application stack, stability and reliability will rule the day.

Two Takes On ASIC Design

Making ASICs is a tough task. We learned this last year at Cisco Live Berlin from this conversation with Dave Zacks:

Cisco spent 6 years building the UADP ASIC that powers their next generation switches. They solved a lot of the issues with ASIC design and re-spins by creating some programmability in the development process.

Now, watch this video from Nick McKeown at Barefoot Networks:

Nick says many of the same things that Dave said in his video. But Nick and Barefoot took a totally different approach from Cisco. Instead of creating programmable elements in the ASIC design, then abstracted the entire language of function definition from the ASIC. By using P4 as the high level language and making the system compile the instruction sets down to run in the ASIC, they reduced the complexity, increased the speed, and managed to make the system flexible and capable of implementing new technologies even after the ASIC design is set in stone.

Oh, and they managed to do it in 3 years.

Sometimes, you have to think outside the box in order to come up with some new ideas. Even if that means you have to pull everything out of the box. By abstracting the language from the ASIC, Barefoot not only managed to find a way to increase performance but also to add feature sets to the switch quickly without huge engineering costs.

Some food for thought.

HPE Networking: Past, Present, and Future

hpe_pri_grn_pos_rgb

I had the chance to attend HPE Discover last week by invitation from their influencer team. I wanted to see how HPE Networking had been getting along since the acquisition of Aruba Networks last year. There have been some moves and changes, including a new partnership with Arista Networks announced in September. What follows is my analysis of HPE’s Networking portfolio after HPE Discover London and where they are headed in the future.

Campus and Data Center Divisions

Recently, HPE reorganized their networking division along two different lines. The first is the Aruba brand that contains all the wireless assets along with the campus networking portfolio. This is where the campus belongs. The edge of the network is an ever-changing area where connectivity is king. Reallocating the campus assets to the capable Aruba team means that they will do the most good there.

The rest of the data center networking assets were loaded into the Data Center Infrastructure Group (DCIG). This group is headed up by Dominick Wilde and contains things like FlexFabric and Altoline. The partnership with Arista rounds out the rest of the switch portfolio. This helps HPE position their offerings across a wide range of potential clients, from existing data center infrastructure to newer cloud-ready shops focusing on DevOps and rapid application development.

After hearing Dom Wilde speak to us about the networking portfolio goals, I think I can see where HPE is headed going forward.

The Past: HPE FlexFabric

As Dom Wilde said during our session, “I have a market for FlexFabric and can sell it for the next ten years.” FlexFabric represents the traditional data center networking. There is a huge market for existing infrastructure for customers that have made a huge investment in HPE in the past. Dom is absolutely right when he says the market for FlexFabric isn’t going to shrink the foreseeable future. Even though the migration to the cloud is underway, there are a significant number of existing applications that will never be cloud ready.

FlexFabric represents the market segment that will persist on existing solutions until a rewrite of critical applications can be undertaken to get them moved to the cloud. Think of FlexFabric as the vaunted buggy whip manufacturer. They may be the last one left, but for the people that need their products they are the only option in town. DCIG may have eyes on the future, but that plan will be financed by FlexFabric.

The Present: HPE Altoline

Altoline is where HPE was pouring their research for the past year. Altoline is a product line that benefits from the latest in software defined and webscale technologies. It is technology that utilizes OpenSwitch as the operating system. HPE initially developed OpenSwitch as an open, vendor-neutral platform before turning it over to the Linux Foundation this summer to run with development from a variety of different partners.

Dom brought up a couple of great use cases for Altoline during our discussion that struck me as brilliant. One of them was using it as an out-of-band monitoring solution. These switches don’t need to be big or redundant. They need to have ports and a management interface. They don’t need complexity. They need simplicity. That’s where Altoline comes into play. It’s never going to be as complex as FlexFabric or as programmable as Arista. But it doesn’t have to be. In a workshop full of table saw and drill presses, Altoline is a basic screwdriver. It’s a tool you can count on to get the easy jobs done in a pinch.

The Future: Arista

The Arista partnership, according to Dom Wilde, is all about getting ready for the cloud. For those customers that are looking at moving workloads to the cloud or creating a hybrid environment, Arista is the perfect choice. All of Arista’s recent solution sets have been focused on providing high-speed, programmable networking that can integrate a number of development tools. EOS is the most extensible operating system on the market and is a favorite for developers. Positioning Arista at the top of the food chain is a great play for customers that don’t have a huge investment in cloud-ready networking right now.

The question that I keep coming back to is…when does this Arista partnership become an acquisition? There is a significant integration between the two companies. Arista has essentially displaced the top of the line for HPE. How long will it take for Arista to make the partnership more permanent? I can easily foresee HPE making a play for the potential revenues produced by Arista and the help they provide moving things to the cloud.


Tom’s Take

I was the only networking person at HPE Discover this year because the HPE networking story has been simplified quite a bit. On the one hand, you have the campus tied up with Aruba. They have their own story to tell in a different area early next year. On the other hand, you have the simplification of the portfolio with DCIG and the inclusion of the Arista partnership. I think that Altoline is going to find a niche for specific use cases but will never really take off as a separate platform. FlexFabric is in maintenance mode as far as development is concerned. It may get faster, but it isn’t likely to get smarter. Not that it really needs to. FlexFabric will support legacy architecture. The real path forward is Arista and all the flexibility it represents. The question is whether HPE will try to make Arista a business unit before Arista takes off and becomes too expensive to buy.

Disclaimer

I was an invited guest of HPE for HPE Discover London. They paid for my travel and lodging costs as well as covering event transportation and meals. They did not ask for nor were they promised any kind of consideration in the coverage provided here. The opinions and analysis contained in this article represent my thoughts alone.

OpenFlow Is Dead. Long Live OpenFlow.

The King Is Dead - Long Live The King

Remember OpenFlow? The hammer that was set to solve all of our vaguely nail-like problems? Remember how everything was going to be based on OpenFlow going forward and the world was going to be a better place? Or how heretics like Ivan Pepelnjak (@IOSHints) that dared to ask questions about scalability or value of application were derided and laughed at? Yeah, good times. Today, I stand here to eulogize OpenFlow, but not to bury it. And perhaps find out that OpenFlow has a much happier life after death.

OpenFlow Is The Viagra Of Networking

OpenFlow is not that much different than Sildenafil, the active ingredient in Vigara. Both were initially developed to do something that they didn’t end up actually solving. In the case of Sildenafil, it was high blood pressure. The “side effect” of raising blood pressure in a specific body part wasn’t even realized until after the trials of the drug. The side effect because the primary focus of the medication that was eventually developed into a billion dollar industry.

In the same way, OpenFlow failed at its stated mission of replacing the forwarding plane programming method of switches. As pointed out by folks like Ivan, it had huge scalability issues. It was a bit clunky when it came to handling flow programming. The race from 1.0 to 1.3 spec finalization left vendors in the dust, but the freeze on 1.3 for the past few years has really hurt innovation. Objectively, the fact that almost no major shipping product uses OpenFlow as a forwarding paradigm should be evidence of it’s failure.

The side effect of OpenFlow is that it proved that networking could be done in software just as easily as it could be done in hardware. Things that we thought we historically needed ASICs and FPGAs to do could be done by a software construct. OpenFlow proved the viability of Software Defined Networking in a way that no one else could. Yet, as people abandoned it for other faster protocols or rewrote their stacks to take advantage of other methods, OpenFlow did still have a great number of uses.

OpenFlow Is a Garlic Press, Not A Hammer

OpenFlow isn’t really designed to solve every problem. It’s not a generic tool that can be used in a variety of situations. It has some very specific use cases that it does excel at doing, though. Think more like a garlic press. It’s a use case tool that is very specific for what it does and does that thing very well.

This video from Networking Field Day 13 is a great example of OpenFlow being used for a specific task. NEC’s flavor of OpenFlow, ProgrammableFlow, is used on conjunction with higher layer services like firewalls and security appliances to mitigate the spread of infections. That’s a huge win for networking professionals. Think about how hard it would be to track down these systems in a network of thousands of devices. Even worse, with the level of virulence of modern malware, it doesn’t take long before the infected system has infected others. It’s not enough to shut down the payload. The infection behavior must be removed as well.

What NEC is showing is the ultimate way to stop this from happening. By interrogating the flows against a security policy, the flow entries can be removed from switches across the network or have deny entries written to prevent communications. Imagine being able to block a specific workstation from talking to anything on the network until it can be cleaned. And have that happen automatically without human interaction. What if a security service could get new malware or virus definitions and install those flow entries on the fly? Malware could be stopped before it became a problem.

This is where OpenFlow will be headed in the future. It’s no longer about adapting the problems to fit the protocol. We can’t keep trying to frame the problem around how much it resembles a nail just so we can use the hammer in our toolbox. Instead, OpenFlow will live on as a point protocol in a larger toolbox that can do a few things really well. That means we’ll use it when we need to and use a different tool when needed that better suits the problem we’re actually trying to solve. That will ensure that the best tool is used for the right job in every case.


Tom’s Take

OpenFlow is still useful. Look at what Coho Data is using it for. Or NEC. Or any one of a number of companies that are still developing on it. But the fact that these companies have put significant investment and time into the development of the protocol should tell you what the larger industry thinks. They believe that OpenFlow is a dead end that can’t magically solve the problems they have with their systems. So they’ve moved to a different hammer to bang away with. I think that OpenFlow is going to live a very happy life now that people are leaving it to solve the problems it’s good at solving. Maybe one day we’ll look back on the first life of OpenFlow not as a failure, but instead as the end of the beginning of it become what it was always meant to be.

Nutanix and Plexxi – An Affinity to Converge

nutanix-logo

Nutanix has been lighting the hyperconverged world on fire as of late. Strong sales led to a big IPO for their stock. They are in a lot of conversations about using their solution in place of large traditional virtualization offerings that include things like blade servers or big boxes. And even coming off the recent Nutanix .NEXT conference there were some big announcements in the networking arena to help them complete their total solution. However, I think Nutanix is missing a big opportunity that’s right in front of them.

I think it’s time for Nutanix to buy Plexxi.

Software Says

If you look at the Nutanix announcements around networking from .NEXT, they look very familiar to anyone in the server space. The highlights include service chaining, microsegmentation, and monitoring all accessible through an API. If this sounds an awful lot like VMware NSX, Cisco ACI, or any one of a number of new networking companies then you are in the right mode of thinking as far as Nutanix is concerned.

SDN in the server space is all about overlay networking. Segmentation of flows and service chaining are the reason why security is so hard to do in the networking space today. Trying to get traffic to behave in a certain way drives networking professionals nuts. Monitoring all of that to ensure that you’re actually doing what you say you’re doing just adds complexity. And the API is the way to do all of that without having to walk down to the data center to console into a switch and learn a new non-Linux CLI command set.

SDN vendors like VMware and Cisco ACI would naturally have jumped onto these complaints and difficulties in the networking world and both have offered solutions for them with their products. For Nutanix to have bundled solutions like this into their networking offering is no accident. They are looking to battle VMware head-to-head and need to offer the kind of feature parity that it’s going to take a make medium to large shops shift their focus away from the VMware ecosystem and take a long look at what Nutanix is offering.

In a way, Nutanix and VMware are starting to reinforce the idea that the network isn’t a magical realm of protocols and tricks that make applications work. Instead, it’s a simple transport layer between locations. For instance, Amazon doesn’t rely on the magic of the interstate system to get your packages from the distribution center to your home. Instead, the interstate system is just a transport layer for their shipping overlays – UPS, FedEX, and so on. The overlay is where the real magic is happening.

Nutanix doesn’t care what your network looks like. They can do almost everything on top of it with their overlay protocols. That would seem to suggest that the focus going forward should be to marginalize or outright ignore the lower layers of the network in favor of something that Nutanix has visibility into and can offer control and monitoring of. That’s where the Plexxi play comes into focus.

Plexxi Logo

Affinity for Awesome

Plexxi has long been a company in search of a way to sell what they do best. When I first saw them years ago, they were touting their Affinities idea as a way to build fast pathways between endpoints to provide better performance for applications that naturally talked to each other. This was a great idea back then. But it quickly got overshadowed by the other SDN solutions out there. It even caused Plexxi to go down a slightly different path for a while looking at other options to compete in a market that they didn’t really have a perfect fit product.

But the Affinities idea is perfect for hyperconverged solutions. Companies like Nutanix are marking their solutions as the way to create application-focused compute nodes on-site without the need to mess with the cloud. It’s a scalable solution that will eventually lead to having multiple nodes in the future as your needs expand. Hyperconverged was designed to be consumable per compute unit as opposed to massively scaling out in leaps and bounds.

Plexxi Affinities is just the tip of the iceberg. Plexxi’s networking connectivity also gives Nutanix the ability to build out a high-speed interconnect network with one advantage – noninterference. I’m speaking about what happens when a customer needs to add more networking ports to support this architecture. They need to make a call to their Networking Vendor of Choice. In the case of Cisco, HPE, or others, that call will often involve a conversation about what they’re doing with the new network followed by a sales pitch for their hyperconverged solution or a partner solution that benefits both companies. Nutanix has a reputation for being the disruptor in traditional IT. The more they can keep their traditional competitors out of the conversation, the more likely they are to keep the business into the future.


Tom’s Take

Plexxi is very much a company with an interesting solution in need of a friend. They aren’t big enough to really partner with hyperconverged solutions, and most of the hyperconverged market at this point is either cozy with someone else or not looking to make big purchases. Nutanix has the rebel mentality. They move fast and strike quickly to get their deals done. They don’t take prisoners. They look to make a splash and get people talking. The best way to keep that up is to bundle a real non-software networking component alongside a solution that will make the application owners happy and keep the conversation focused on a single source. That’s how Cisco did it back and the day and how VMware has climbed to the top of the virtualization market.

If Nutanix were to spend some of that nice IPO money on a Plexxi Christmas present, I think 2017 would be the year that Nutanix stops being discussed in hushed whispers and becomes a real force to be reckoned with up and down the stack.

Facebook Wedge 100 – The Future of the Data Center?

 

FBLike

Facebook is back in the news again. This time, it’s because of the release of their new Wedge 100 switch into the Open Compute Project (OCP). Wedge was already making headlines when Facebook announced it two years ago. A fast, open sourced 40Gig Top-of-Rack (ToR) switch was huge. Now, Facebook is letting everyone in on the fun of a faster Wedge that has been deployed into production at Facebook data centers as well as being offered for sale through Edgecore Networks, which is itself a division of Accton. Accton has been leading the way in the whitebox switching market and Wedge 100 may be one of the ways it climbs to the top.

Holy Hardware!

Wedge 100 is pretty impressive from the spec sheet. They paid special attention to making sure the modules were expandable, especially for faster CPUs and special purpose devices down the road. That’s possible because Wedge is a highly specialized micro server already. Rather than rearchitecting the guts of the whole thing, Facebook kept the CPU and the monitoring stack and just put newer, faster modules on it to ramp to 32x100Gig connectivity.

12809187_1676340369272065_1831349201_n

As suspected in the above image, Facebook is using Broadcom Tomahawk as the base connectivity in their switch, which isn’t surprising. Tomahawk is the roadmap for all vendors to get to 100Gig. It also means that the downlink connectivity for these switches could conceivably work in 25/50Gig increments. However, given the enormous amount of east/west traffic that Facebook must generate, Facebook has created a server platform they call Yosemite that has 100Gig links as well. Given the probably backplane there, you can imagine the data that’s getting thrown around the data centers.

That’s not all. Omar Baldonado has said that they are looking at going to 400Gig connectivity soon. That’s the kind of mind blowing speed that you see in places like Google and Facebook. Remember that this hardware is built for a specific purpose. They don’t just have elephant flows. They have flows the size of an elephant herd. That’s why they fret about the operating temperature of optics or the rack design they want to use (standard versus Open Racks). Because every little change matters a thousand fold at that scale.

Software For The People

The other exciting announcement from Facebook was on the software front. Of course, FBOSS has been updated to work with Wedge 100. I found it very interesting in the press release that much of the programming in FBOSS went into interoperability with Wedge 40 and with fixing the hardware side of things. This makes some sense when you realize that Facebook didn’t need to spend a lot of time making Wedge 40 interoperate with anything, since it was a wholesale replacement. But Wedge 100 would need to coexist with Wedge 40 as the rollout happens, so making everything play nice is a huge point on the checklist.

The other software announcement that got the community talking was support for third-party operating systems running on Wedge 100. The first one up was Open Network Linux from Big Switch Networks. ONL ran on the original Wedge 40 and now runs on the Wedge 100. This means that if you’re familiar with running BSN OSes on your devices, you can drop in a Wedge 100 in your spine or fabric and be ready to go.

The second exciting announcement about software comes from a new company, Apstra. Apstra announced their entry into OCP and their intent to get their Apstra Operating System (AOS) running on Wedge 100 by next year. That has a big potential impact for Apstra customers that want to deploy these switches down the road. I hope to hear more about this from Apstra during their presentation at Networking Field Day 13 next month.


Tom’s Take

Facebook is blazing a trail for fast ToR switches. They’ve got the technical chops to build what they need and release the designs to the rest of the world to be used for a variety of ideas. Granted, your data center looks nothing like Facebook. But the ideas they are pioneering are having an impact down the line. If Open Rack catches on you may see different ideas in data center standardization. If the Six Pack catches on as a new chassis concept, it’s going to change spines as well.

If you want to get your hands dirty with Wedge, build a new 100Gig pod and buy one from Edgecore. The downlinks can break out into 10Gig and 25Gig links for servers and knowing it can run ONL or Apstra AOS (eventually) gives you some familiar ground to start from. If it runs as fast as they say it does, it may be a better investment right now than waiting for Tomahawk II to come to your favorite vendor.

 

 

Tomahawk II – Performance Over Programmability

tomahawk2

Broadcom announced a new addition to their growing family of merchant silicon today. The new Broadcom Tomahawk II is a monster. It doubles the speed of it’s first-generation predecessor. It has 6.4 Tbps of aggregate throughout, divided up into 256 25Gbps ports that can be combined into 128 50Gbps or even 64 100Gbps ports. That’s fast no matter how you slice it.

Broadcom is aiming to push these switches into niches like High-Performance Computing (HPC) and massive data centers doing big data/analytics or video processing to start. The use cases for 25/50Gbps haven’t really changed. What Broadcom is delivering now is port density. I fully expect to see top-of-rack (ToR) switches running 25Gbps down to the servers with new add-in cards connected to 50Gbps uplinks that deliver them to the massive new Tomahawk II switches running in the spine or end-of-row (EoR) configuration for east-west traffic disbursement.

Another curious fact of the Tomahawk II is the complete lack of 40Gbps support. Granted, the support was only paid lip service in the Tomahawk I. The real focus was on shifting to 25/50Gbps instead of the weird 10/40/100Gbps split we had in Trident II. I talked about this a couple of years ago and wasn’t very high on it back then, but I didn’t know the level of apathy people had for 40Gbps uplinks. The push to 25/50Gbps has only been held up so far by the lack of availability of new NICs for servers to enable faster speeds. Now that those are starting to be produced in volume expect the 40Gbps uplinks to be a relic of the past.

A Foot In The Door

Not everyone is entirely happy about the new Broadcom Tomahawk II. I received an email today with a quote from Martin Izzard of Barefoot Networks, discussing their new Tofino platform. He said in part:

Barefoot led the way in June with the introduction of Tofino, the world’s first fully programmable switches, which also happen to be the fastest switches ever built.

It’s true that Tofino is very fast. It was the first 6.4 Tbps switch on the market. I talked a bit about it a few months ago. But I think that Barefoot is a bit off on its assessment here and has a bit of an axe to grind.

Barefoot is pushing something special with Tofino. They are looking to create a super fast platform with programmability. P4 is not quite an FPGA and it’s not an ASIC. It’s a switch stripped to its core and rebuilt with a language all its own. That’s great if you’re a dev shop or a niche market that has to squeeze every ounce of performance out of a switch. In the world of cars, the best analogy would be looking at Tofino like a specialized sports car like a Koenigsegg Agera. It’s very fast and very stylish, but it’s purpose built to do one thing – drive really fast on pavement and carry two passengers.

Broadcom doesn’t really care about development shops. They don’t worry about niche markets. Because those users are not their customers. Their customers are Arista, Cisco, Brocade, Juniper and others. Broadcom really is the Intel of the switching world. Their platforms power vendor offerings. Buying a basic Tomahawk II isn’t something you’re going to be able to do. Broadcom will only sell these in huge lots to companies that are building something with them. To keep the car analogy, Tomahawk II is more like the old F-body cars produced by Chevrolet that later went on to become Camaros, Firebirds, and Trans Ams. Each of these cars was distinctive and had their fans, but the chassis was the same underneath the skin.

Broadcom wants everyone to buy their silicon and use it to power the next generation of switches. Barefoot wants a specialist kit that is faster than anything else on the market, provided you’re willing to put the time into learning P4 and stripping out all the bits they feel are unnecessary. Your use case determines your hardware. That hasn’t changed, nor is it likely to change any time soon.


Tom’s Take

The data center will be 25/50/100Gbps top to bottom when the next switch refresh happens. It could even be there sooner if you want to move to a pod-based architecture instead of more traditional designs. The odds are very good that you’re going to be running Tomahawk or Tomahawk II depending on which vendor you buy from. You’re probably only going to be running something special like Tofino or maybe even Cavium if you’ve got a specific workload or architecture that you need performance or programmability.

Don’t wait for the next round of hardware to come out before you have an upgrade plan. Write it now. Think about where you want to be in 4 years. Now double your requirements. Start investigating. Ask your vendor of choice what their plans are. If their plans stink, as their competitor. Get quotes. Get ideas. Be ready for the meeting when it’s scheduled. Make sure you’re ready to work with your management to bury the hatchet, not get a hatchet jobbed network.