Sorting Through SD-WAN

lightspeed

SD-WAN has finally arrived. We’re not longer talking about it in terms of whether or not it is a thing that’s going to happen, but a thing that will happen provided the budgets are right. But while the concept of SD-WAN is certain, one must start to wonder about what’s going to happen to the providers of SD-WAN services.

Any Which Way You Can

I’ve written a lot about SDN and SD-WAN. SD-WAN is the best example of how SDN should be marketed to people. Instead of talking about features like APIs, orchestration, and programmability, you need to focus on the right hook. Do you see a food processor by talking about how many attachments it has? Or do you sell a Swiss Army knife by talking about all the crazy screwdrivers it holds? Or do you simply boil it down to “This thing makes your life easier”?

The most successful companies have made the “easier” pitch the way forward. Throwing a kitchen sink at people doesn’t make them buy a whole kitchen. But showing them how easy and automated you can make installation and management will sell boxes by the truckload. You have to appeal the opposite nature that SD-WAN was created to solve. WANs are hard, SD-WANs make them easy.

But that only works if your SD-WAN solution is easy in the first place. The biggest, most obvious target is Cisco IWAN. I will be the first to argue that the reason that Cisco hasn’t captured the SD-WAN market is because IWAN isn’t SD-WAN. It’s a series of existing technologies that were brought together to try and make and SD-WAN competitor. IWAN has all the technical credibility of a laboratory full of parts of amazing machines. What it lacks is any kind of ability to tie all that together easily.

IWAN is a moving target. Which platform should I use? Do I need this software to make it run correctly? How do I do zero-touch deployments? Or traffic control? How do I plug a 4G/LTE modem into the router? The answers to each of these questions involves typing commands or buying additional software features. That’s not the way to attack the complexity of WANs. In fact, it feeds into that complexity even more.

Cisco needs to look at a true SD-WAN technology. That likely means acquisition. Sure, it’s going to be a huge pain to integrate an acquisition with other components like APIC-EM, but given the lead that other competitors have right now, it’s time for Cisco to come up with a solution that knocks the socks off their longtime customers. Or face the very real possibility of not having longtime customers any longer.

Every Which Way But Loose

The first-generation providers of SD-WAN bounced onto the scene to pick up the pieces from IWAN. Names like Viptela, VeloCloud, CloudGenix, Versa Networks, and more. But, aside from all managing to build roughly the same platform with very similar features, they’ve hit a might big wall. They need to start making money in order for these gambles to pay off. Some have customers. Others are managing the migration into other services, like catering their offerings toward service providers. Still others are ripe acquisition targets for companies that lack an SD-WAN strategy, like HPE or Dell. I expect to see some fallout from the first generation providers consolidating this year.

The second generation providers, like Riverbed and Silver Peak, all have something in common. They are building on a business they’ve already proven. It’s no coincidence that both Riverbed and Silver Peak are the most well-known names in WAN optimization. How well known? Even major Cisco partners will argue that they sell these two “best of breed” offerings over Cisco’s own WAAS solution. Riverbed and Silver Peak have a definite advantage because they have a lot of existing customers that rely on WAN optimization. That market alone is going to net them a significant number of customers over the next few years. They can easily sell SD-WAN as the perfect addition to make WAN optimization even easier.

The third category of SD-WAN providers is the late comers. I still can’t believe it, but I’ve been reading about providers that aren’t traditional companies trying to get into the space. Talk about being the ninth horse in an eight horse race. Honestly, at this point you’re better off plowing your investment money into something else, like Internet of Things or Virtual Reality. There’s precious little room among the existing first generation providers and the second generation stalwarts. At best, all you can hope for is a quick exit. At worst, your “novel” technology will be snapped up for pennies after you’re bankrupt and liquidating everything but the standing desks.


Tom’s Take

Why am I excited about the arrival of SD-WAN? Because now I can finally stop talking about it! In all seriousness, when the boardroom starts talking about things that means it’s past the point of being a hobby project and now has become a real debate. SD-WAN is going to change one of the most irritating aspects of networking technology for us. I can remember trying to study for my CCNP and cramming all the DSL and T1 knowledge a person could fit into a brain in my head. Now, it’s all point-and-click and done. IPSec VPNs, traffic analytics, and application identification are so easy it’s scary. That’s the power of SD-WAN to me. Easy to use and easy to extend. I think that the landscape of providers of SD-WAN technologies is going to look vastly different by the end of 2017. But SD-WAN is going to be here for the long haul.

Automating Your Job Away Isn’t Easy

programming

One of the most common complaints about SDN that comes from entry-level networking folks is that SDN is going to take their job away. People fear what SDN represents because it has the ability to replace their everyday tasks and put them out of a job. While this is nowhere close to reality, it’s a common enough argument that I hear it very often during Q&A sessions. How is it that SDN has the ability to ruin so many jobs? And how is it that we just now have found a way to do this?

Measure Twice

One of the biggest reasons that the automation portion of SDN has become so effective in today’s IT environment is that we can finally measure what it is that networks are supposed to be doing and how best to configure them. Think about the work that was done in the past to configure and troubleshoot networks. It’s often a very difficult task that involves a lot of intuition and guesswork. If you tried to explain to someone the best way to do things, you’d likely find yourself at a loss for words.

However, we’ve had boring, predictable standards for many years. Instead of cobbling together half-built networks and integrating them in the most obscene ways possible, we’ve instead worked toward planning and architecting things properly so they are built correctly from the ground up. No more guess work. No more last minute decisions that come back to haunt us years down the road. Those kinds of things are the basic building blocks for automation.

When something is built along the lines of predictable rules with proper adherence to standards, it’s something that can be understood by a non-human. Going all the way back to Basic Computing 101, the inputs of a system determine the outputs. More simply, Garbage In, Garbage Out. If your network configuration looks like a messy pile of barely operational commands it will only really work when a human can understand what’s going on. Machines don’t guess. They do exactly what they are told to do. Which means that they tend to break when the decisions aren’t clear.

Cut Once

When a system, script, or program can read inputs and make procedural decisions on those inputs, you can make some very powerful things happen. Provided, that is, that your chosen language is powerful enough to do those things. I’m reminded of a problem I worked on fifteen years ago during my internship at IBM. I needed to change the MTU size for a network adapter in the Windows 2000 registry. My programming language of choice wasn’t powerful enough for me to say something like, “Read these values into an array and change the last 2 or 3 to the following MTU”. So instead, I built a nested if statement that was about 15 levels deep to ensure I caught every possible permutation of the adapter binding order. It was messy. It was ugly. And it worked. But there was no way it would scale.

The most important thing to realize about SDN and automation is that we’ve moved past simply understanding basic values. We’ve finally graduated to a place where programs can make complex decisions based on a number of inputs. We’ve graduated from simple if-then-else constructs and up to a point where programs can take a number of inputs and make decisions based on them. Sure, in many cases the inputs are simple little things like tags or labels. But what we’re gaining is the ability to process more and more of those labels. We can create provisioning scripts that ensure that prod never talks to dev. We can automate turn-up of a new switch with multiple VLANs on different ports through the use of labels and object classes. We can even extrapolate this to a policy-based network language that we can use to build a task once and execute it over and over again on different hardware because we’re doing higher level processing instead of being hamstrung by specific device syntax.

Automation is going to cost some people their jobs. That’s a given. Just like every other manufacturing position, the menial tasks of assembling simple pieces or performing repetitive tasks can easily be accomplished by a machine or software construct. But writing those programs and working on those machines is a new kind of job in and of itself. A humorous anecdote from the auto industry says that the introduction of robots onto assembly lines caused many workers to complain and threaten to walk off the job. However, one worker picked up the manual for the robot and realized that he could easily start working on the it instead of the assembly line.


Tom’s Take

Automation isn’t a magic bullet to fix all your problems. It only works if things are ordered and structured in such a way that you can predictably repeat tasks over and over. And it’s not going to stop with one script or process. You need to continue to build, change, and extend your environment. Which means that your job of programming switches should now be looked at in light of building the programs that program switches. Does it mean that you need to forget the basics of networking? No, but it does mean that they way in which you think about them will change.

The Complexity Conundrum

NailPuzzle

Complexity is the enemy of understanding. Think about how much time you spend in your day trying to simplify things. Complexity is the reason why things like Reddit’s Explain Like I’m Five exist. We strive in our daily lives to find ways to simplify the way things are done. Well, except in networking.

Building On Shifting Sands

Networking hasn’t always been a super complex thing. Back when bridges tied together two sections of Ethernet, networking was fairly simple. We’ve spent years trying to make the network do bigger and better things faster with less input. Routing protocols have become more complicated. Network topologies grow and become harder to understand. Protocols do magical things with very little documentation beyond “Pure Freaking Magic”.

Part of this comes from applications. I’ve made my feelings on application development clear. Ivan Pepelnjak had some great comments on this post as well from Steve Chalmers and Derick Winkworth (@CloudToad). I especially like this one:

Derick is right. The application developers have forced us to make networking do more and more faster with less requirement for humans to do the work to meet crazy continuous improvement and continuous development goalposts. Networking, when built properly, is a static object like the electrical grid or a plumbing system. Application developers want it to move and change and breathe with their needs when they need to spin up 10,000 containers for three minutes to run a test or increase bandwidth 100x to support a rollout of a video streaming app or a sticker-based IM program designed to run during a sports championship.

We’ve risen to meet this challenge with what we’ve had to work with. In part, it’s because we don’t like being the scapegoat for every problem in the data center. We tire of sitting next to the storage admins and complaining about the breakneck pace of IT changes. We have embraced software enhancements and tried to find ways to automate, orchestrate, and accelerate. Which is great in theory. But in reality, we’re just covering over the problem.

Abstract Complexity

The solution to our software networking issues seems simple on the surface. Want to automate? Add a layer to abstract away the complexity. Want to build an orchestration system on top of that? Easy to do with another layer of abstraction to tie automation systems together. Want to make it all go faster? Abstract away!

“All problems in computer science can be solved with another layer of indirection.”

This is a quote from Butler Lampson often attributed to David Wheeler. It’s absolutely true. Developers, engineers, and systems builders keep adding layers of abstraction and indirection on top of complex system and proclaiming that everything is now easier because it looks simple. But what happens why the abstraction breaks down?

Automobiles are perfect example of this. Not too many years ago, automobiles were relatively simple things. Sure, internal combustion engines aren’t toys. But most mechanics could disassemble the engine and fix most issues with a wrench and some knowledge. Today’s cars have computers, diagnostics systems, and require lots of lots of dedicated tools to even diagnose the problem, let alone fix it. We’ve traded simplicity and ease of repairability the appearance of “simple” which conceals a huge amount of complexity under the surface.

To refer back to the Lampson/Wheeler quote, the completion of it is, “Except, of course, for the problem of too many indirections.” Even forty years ago it was understood that too many layers of abstraction would eventually lead to problems. We are quickly reaching this point in networking today. With all the reliance on complex tools providing an overwhelming amount of data about every point of the network, we find ourselves forced to use dashboards and data lakes to keep up with the rapid pace of changes dictated to the network by systems integrations being driven by developer desires and not sound network systems thinking.

Networking professionals can’t keep up. Just as other systems now must be maintained by algorithms to keep pace, so too does the network find itself being run by software instead of augmented by it. Even if people wanted to make a change they would be unable to do so because validating those changes manually would cause issues or interactions that could create havoc later on.

Simple Solutions

So how do we fix the issues? Can we just scrap it all and start over? Sadly, the answer here is a resounding “no”. We have to keep moving the network forward to match pace with the rest of IT. But we can do our part to cut down on the amount of complexity and abstraction being created in the process. Documentation is as critical as ever. Engineers and architects need to make sure to write down all the changes they make as well as their proposed designs for adding services and creating new features. Developers writing for the network need to document their APIs and their programs liberally so that troubleshooting and extension are easily accomplished instead of just guessing about what something is or isn’t supposed to be doing.

When the time comes to build something new, instead of trying to plaster over it with an abstraction, we need to break things down into their basic components and understand what we’re trying to accomplish. We need to augment existing systems instead of building new ones on top of the old to make things look easy. When we can extend existing ideas or augment them in such as way as to coexist then we can worry less about hiding problems and more about solving them.


Tom’s Take

Abstraction has a place, just like NAT. It’s when things spiral out of control and hide the very problems we’re trying to fix that it becomes an abomination. Rather than piling things on the top of the issue and trying to hide it away until the inevitable day when everything comes crashing down, we should instead do the opposite. Don’t hide it, expose it instead. Understand the complexity and solve the problem with simplicity. Yes, the solution itself may require some hard thinking and some pretty elegant programming. But in the end that means that you will really understand things and solve the complexity conundrum.

SDN Myths Revisited

techunplugged-logo

I had a great time at TECHunplugged a couple of weeks ago. I learned a lot about emerging topics in technology, including a great talk about the death of disk from Chris Mellor of the Register. All in all, it was a great event. Even with a presentation from the token (ring) networking guy:

I had a great time talking about SDN myths and truths and doing some investigation behind the scenes. What we see and hear about SDN is only a small part of what people think about it.

SDN Myths

Myths emerge because people can’t understand or won’t understand something. Myths perpetuate because they are larger than life. Lumberjacks and blue oxen clearing forests. Cowboys roping tornadoes. That kind of thing. With technology, those myths exist because people don’t want to believe reality.

SDN is going to take the jobs of people that can’t face the reality that technology changes rapidly. There is a segment of the tech worker populace that just moves from new job to new job doing the same old things. We leave technology behind all the time without a care in the world. But we worry when people can’t work on that technology.

I want you to put your hands on a floppy disk. Go on, I’ll wait. Not so easy, is it? Removable disk technology is on the way out the door. Not just magnetic disk either. I had a hard time finding a CD-ROM drive the other day to read an old disc with some pictures. I’ve taken to downloading digital copies of films because my kids don’t like operating a DVD player any longer. We don’t mourn the passing of disks, we celebrate it.

Look at COBOL. It’s a venerable programming language that still runs a large percentage of insurance agency computer systems. It’s safe to say that the amount of money it would cost to migrate away from COBOL to something relatively modern would be in the millions, if not billions, of dollars. Much easier to take a green programmer and teach them an all-but-dead language and pay them several thousand dollars to maintain this out-of-date system.

It’s like the old story of buggy whip manufacturers. There’s still a market for them out there. Not as big as it was before the introduction of the automobile. But it’s there. You probably can’t break into that market and you had better be very good (or really cheap) at making them if you want to get a job doing it. The job that a new technology replaced is still available for those that need that technology to work. But most of the rest of society has moved on and the old technology fills a niche roll.

SDN Truths

I wasn’t kidding when I said that Gartner not having an SDN quadrant was the smartest thing they ever did (aside from the shot at stretched layer 2 DCI). I say this because it will finally force customers to stop asking for a magic bullet SDN solution and it will force traditional networking vendors to stop packaging a bunch of crap and selling it as a magic bullet.

When SDN becomes a part of the entire solution and not some mystical hammer that fixes all the nails in your environment, then the real transformation can happen. Then people that are obstructing real change can be marginalized and removed. And the technology can be the driver for advancement instead of someone coming down the hall complaining about things not working.

We spend so much time reacting to problems that we forgot how to solve them for good. We’re not being malicious. We just can’t get past the triage. That’s the heart of the fire fighter problem. Ivan wrote a great response to my fire fighter post and his points were spot on. Especially the ones about people standing in the way, whether it be through outright obstruction or by taking power away to affect real change. We can’t hold networking people responsible for the architecture and simultaneously keep them from solving the root issues. That’s the ham-handed kind of organizational roadblock that needs to change to move networking forward.


Tom’s Take

Talks like this don’t happen over night. They take careful planning and thought, followed by panic when you realize your 45-minute talk is actually 20-minutes. So you cut out the boring stuff and get right to the meat of the issue. In this case, that meat is the continued misperception of SDN no matter how much education we throw at the networking community. We’re not going to end up jobless programmers being lied to by silver-tongued marketing wonks. But we are going to have to face the need for organization change and process reevaluation on a scale that will take months, if not years, to implement correctly. And then do it all over again as technology evolves to fit the new mold we created when we broke the old one.

I would rather see the easy money flee to a new startup slot machine and all of the fair weather professionals move on to a new career in whatever is the hot new thing. That means those of us left behind in the newly-transformed traditional networking space will be grizzled veterans willing to learn and implement the changes we need to make to stop being blamed for the problems of IT and be a model for how it should be run. That’s a future to look forward to.

 

This WAN Is Your WAN, This WAN Is My WAN

Straw Bales on Hill Landscape, Tuscany, Italy

Straw Bales on Hill Landscape, Tuscany, Italy

Ideas coalesce all the time in every vertical. You don’t really notice it until you wake up one day and suddenly everything around you looks identical. Wireless becoming the new access layer. Flash storage taking hold of the high end performance crown. And in networking we have the dominance of all things software defined. One recent development has coming along much faster than anyone could have predicted: Software Defined Wide Area Networking (SD-WAN).

Automatic For The People

SD-WAN is a force in modern networking because people want simplicity. While Ivan does a great job of decoupling marketing from reality, people still believe that SD-WAN is the silver bullet that will fix all of their WAN woes. Even during the original discussions of SD-WAN technology at conferences like ONUG, the overriding idea wasn’t around tying sites together or driving down costs to the point of feasibility. It was all about making life easier.

How does SD-WAN manage to accomplish this? It’s all black box networking. Just like the fuel injector in your car. There’s no crying about interoperability or standards-based protocols. You just plug things in and it all works, even if you can’t exactly plug one vendor solution into a competitor. Lock in wins again.

The ideas behind SD-WAN aren’t exactly new. Cisco talked about SD-WAN quite a bit at Networking Field Day 10. Here’s Jeff Reed on it:

The rest of the two hour session details how Cisco is using their Intelligent WAN (IWAN) product to drive SD-WAN. The names of the components all sound very familiar to networkers: DMVPN, NBAR, PfR, and so on. That’s because SD-WAN uses a lot of tried-and-true techniques to tie the concept together. There’s nothing earth-shattering about SD-WAN under the hood. In fact, a fair number of people that work at the “pioneering” SD-WAN startups all seem to have their roots in one or more traditional networking companies.

Fables of Reconstruction

Look at the other presenters at Networking Field Day 10. Two of them announced SD-WAN solutions even though they aren’t really known for expertise in SD-WAN. One of them wasn’t even known as a branch office acceleration solution. So why the SD-WAN land rush all of the sudden? What’s behind the need to have a solution?

You probably wouldn’t be surprised to learn that a lot of investors are backing expansion into SD-WAN technologies. It’s a hot property. But why? As above, customers aren’t interested in the technical wizardry that goes into SD-WAN. They aren’t clamoring for it to supplant their current WAN solution and offer a Rosetta Stone of inter-vendor WAN cooperation. What’s behind the push?

It probably goes something like this:

  1. Technologist needs to implement WAN architecture. Is dismayed that things are so difficult.
  2. Technologist starts searching for solutions about WAN. They probably start asking friends about it.
  3. Analyst firm hears that technologists are asking about WAN solutions. Releases a questionnaire asking which technologies you’d like to learn more about.
  4. Responses to questionnaires are loaded into a graph or report that people buy because they don’t know who to talk to.
  5. Companies realize customers want WAN solutions. They break their necks to offer those solutions to keep up with demand.
  6. Investors see companies beginning to offer WAN solutions and think there’s a huge untapped market. They start funding anyone that mentions WAN in a meeting.

By the way, you can replace “WAN” with any technology above and it still works.

Thanks to customers needing a solution for something they can’t configure easily they are going to be inundated with SD-WAN options by the time they turn around. And the biggest concern no long becomes “Who has the easiest solution?” but instead, “Who is still going to be here in six months?”

Collapse Into Now

The reckoning is coming in the SD-WAN market. If a company doesn’t already have an SD-WAN solution in development or if their solution won’t see daylight for another nine months, they are going to exercise the second “B” of innovation and buy it. And they have a lot of prime targets to choose from.

Investors get cagey without an exit strategy. How are they going to win at this game? They either have to get paid with an IPO, with a later round of funding, or by having someone buy out the investment. If an investor thinks they can get their money back (plus a bit of interest) by having this little startup bought by a traditional networking vendor you can better believe they will be advising the startup to sell.

The customers are the real losers in the case of a buyout, or worse a bankruptcy. Those highly proprietary solutions become dead weight if there isn’t any support for them any longer. Black box networking falls apart when the little magical creatures inside the box go away. Which means customers will be skittish of supporting a solution that is likely to go away any time soon.

Who will you support? An established vendor slow to roll out a solution? Or an up-and-coming company with new ideas but at risk of being snapped up by a big bank account?


Tom’s Take

I loved seeing all the SD-WAN discussion at Networking Field Day 10. SD-WAN is no longer magic sauce that aggregates DSL and MPLS circuits with encryption. Nuage Networks showed off deploying Docker apps to remote sites. Riverbed talked about using their WAN optimization experience to deploy SaaS solutions through SD-WAN.

We’ve heard from SD-WAN companies in the past at Networking Field Day. It’s interesting to hear the comparisons between the upstarts and the old geezers. It’s clear there is a ton of money that is being invested in SD-WAN. The trick is to find out your needs and pick the best solution for you. Otherwise you may find yourself losing your SD-WAN religion.

 

SDN and the Trough Of Understanding

gartner_net_hype_2015

An article published this week referenced a recent Hype Cycle diagram (pictured above) from the oracle of IT – Gartner. While the lede talked a lot about the apparent “death” of Fibre Channel over Ethernet (FCoE), there was also a lot of time devoted to discussing SDN’s arrival at the Trough of Disillusionment. Quoting directly from the oracle:

Interest wanes as experiments and implementations fail to deliver. Producers of the technology shake out or fail. Investments continue only if the surviving providers improve their products to the satisfaction of early adopters.

As SDN approaches this dip in the Hype Cycle it would seem that the steam is finally being let out of the Software Defined Bubble. The Register article mentions how people are going to leave SDN by the wayside and jump on the next hype-filled networking idea, likely SD-WAN given the amount of discussion it has been getting recently. Do you know what this means for SDN? Nothing but good things.

Software Defined Hammers

Engineers have a chronic case of Software Defined Overload. SD-anything ranks right up there with Fat Free and New And Improved as the Most Overused Marketing Terms. Every solution release in the last two years has been software defined somehow. Why? Because that’s what marketing people think engineers want. Put Software Defined in the product and people will buy it hand over fist. Guess what Little Tommy Callahan has to say about that?

There isn’t any disillusionment in this little bump in the road. Quite the contrary. This is where the rubber meets the road, so to speak. This is where all the pretenders to the SDN crown find out that their solutions aren’t suited for mass production. Or that their much-vaunted hammer doesn’t have any nails to drive. Or that their hammer can’t drive a customer’s screws or rivets. And those pretenders will move on to the next hype bubble, leaving the real work to companies that have working solutions and real products that customers want.

This is no different than every other “hammer and nail” problem from the past few decades of networking. Whether it be ATM, MPLS, or any one of a dozen “game changing” technologies, the reality is that each of these solutions went from being the answer to every problem to being a specific solution for specific problems. Hopefully we’ve gotten SDN to this point before someone develops the software defined equivalent of LANE.

The Software Defined Road Ahead

Where does SD-technology go from here? Well, without marketing whipping everyone into a Software Defined Frenzy, the future is whatever developers want to make of it. Developers that come up with solutions. Developers that integrate SDN ideas into products and quietly sell them for specific needs. People that play the long game rather than hope that they can take over the world in a day.

Look at IPv6. It solves so many problems we have with today’s Internet. Not just IP exhaustion issues either. It solves issues with security, availability, and reachability. Yet we are just now starting to deploy it widely thanks to the panic of the IPocalypse. IPv6 did get a fair amount of hype twenty years ago when it was unveiled as the solution to every IP problem. After years of mediocrity and being derided as unnecessary, IPv6 is poised to finally assume its role.

SDN isn’t going to take nearly as long as IPv6 to come into play. What is going to happen is a transition away from Software Defined as the selling point. Even today we’re starting to see companies move away from SD labeling and instead use more specific terms to help customers understand what’s important about the solution and how it will help customers. That’s what is needed to clarify the confusion and reduce fatigue.

 

The Light On The Fiber Mountain

MountainRoad

Fabric switching systems have been a popular solution for many companies in the past few years. Juniper has QFabric and Brocade has VCS. For those not invested in fabrics, the trend has been to collapse the traditional three tier network model down into a spine-leaf architecture to optimize east-west traffic flows. One must wonder how much more optimized that solution can be. As it turns out, there is a bit more that can be coaxed out of it.

Shine A Light On Me

During Interop, I had a chance to speak with the folks over at Fiber Mountain (@FiberMountain) about what they’ve been up to in their solution space. I had heard about their revolutionary SDN offering for fiber. At first, I was a bit doubtful. SDN gets thrown around a lot on new technology as a way to sell it to people that buy buzzwords. I wondered how a fiber networking solution could even take advantage of software.

My chat with M. H. Raza started out with a prop. He showed me one of the new Multifiber Push On (MPO) connectors that represent the new wave of high-density fiber. Each cable, which is roughly the size and shape of a SATA cable, contains 12 or 24 fiber connections. These are very small and pre-configured in a standardized connector. This connector can plug into a server network card and provide several light paths to a server. This connector and the fibers it terminates are the building block for Fiber Mountain’s solution.

With so many fibers running a server, Fiber Mountain can use their software intelligence to start doing interesting things. They can begin to build dedicated traffic lanes for applications and other traffic by isolating that traffic onto fibers already terminated on a server. The connectivity already exists on the server. Fiber Mountain just takes advantage of it. It feels very simliar to the way we add in additional gigabit network ports when we need to expand things like vKernel ports or dedicated traffic lanes for other data.

Quilting Circle

Where this solution starts looking more like a fabric is what happens when you put Fiber Mountain Optical Exchange devices in the middle. These switching devices act like aggregation ports in the “spine” of the network. They can aggregate fibers from top-of-rack switches or from individual servers. These exchanges tag each incoming fiber and add them to the Alpine Orchestration System (AOS), which keeps track of the connections just like the interconnections in a fabric.

Once AOS knows about all the connections in the system, you can use it to start building pathways between east-west traffic flows. You can ensure that traffic between a web server and backend database has dedicated connectivity. You can add additional resources between systems that are currently engaged in heavy processing. You can also dedicated traffic lanes for backup jobs. You can do quite a bit from the AOS console.

Now you have a layer 1 switching fabric without any additional pieces in the middle. The exchanges function almost like a passthrough device. The brains of the system exist in AOS. Remember when Ivan Pepelnjak (@IOSHints) spent all his time pulling QFabric apart to find out what made it tick? The Fiber Mountain solution doesn’t use BGP or MPLS or any other magic protocol sauce. It runs at layer 1. The light paths are programmed by AOS and the packets are swtiched across the dense fiber connections. It’s almost elegant in the simplicity.

Future Illumination

The Fiber Mountain solution has some great promise. Today, most of the operations of the system require manual intervention. You must build out the light paths between servers based on educated guesses. You must manually add additional light paths when extra bandwidth is needed.

Where they can really improve their offering in the future is to add intelligence to AOS to automatically make those decisions based on thresholds and inputs that are predefined. If the system can detect bigger “elephant” traffic flows and automatically provision more bandwidth or isolate these high volume packet generators it will go a long way toward making things much easier on network admins. It would also be great to provide a way to interface that “top talker” data into other systems to alert network admins when traffic flows get high and need additional resources.


Tom’s Take

I like the Fiber Mountain solution. They’ve built a layer 1 fabric that performs similarly to the ones from Juniper and Brocade. They are taking full advantage of the resources provided by the MPO fiber connectors. By adding a new network card to a server, you can test this system without impacting other traffic flows. Fiber Mountain even told me that they are looking at trial installations for customers to bring their technology in at lower costs as a project to show the value to decision makers.

Fiber Moutain has a great start on building a low latency fiber fabric with intelligence. I’ll be keeping a close eye on where the technolgy goes in the future to see how it integrates into the entire network and brings SDN features we all need in our networks.