The 25GbE Datacenter Pipeline

pipeline

SDN may have made networking more exciting thanks to making hardware less important than it has been in the past, but that’s not to say that hardware isn’t important at all. The certainty with which new hardware will come out and make things a little bit faster than before is right there with death and taxes. One of the big announcements yesterday from Hewlett Packard Enterprise (HPE) during HPE Discover was support for a new 25GbE / 100GbE switch architecture built around the FlexFabric 5950 and 12900 products. This may be the tipping point for things.

The Speeds of the Many

I haven’t always been high on 25GbE. Almost two years ago I couldn’t see the point. Things haven’t gotten much different in the last 24 months from a speed perspective. So why the change now? What make this 25GbE offering any different than things from the nascent ideas presented by Arista?

First and foremost, the 25GbE released by HPE this week is based on the Broadcom Tomahawk chipset. When 25GbE was first presented, it was a collection of vendors trying to convince you to upgrade to their slightly faster Ethernet. But in the past two years, most of the merchant offerings on the market have coalesced around using Broadcom as the primary chipset. That means that odds are good your favorite switching platform is running Trident 2 or Trident 2+ under the hood.

With Broadcom backing the silicon, that means wider adoption of the specification. Why would anyone buy 25GbE from Brocade or Dell or HPE if the only vendor supporting it was that vendor of choice? If you can’t ever be certain that you’ll have support for the hardware in three or five years time, making an investment today seems silly. Broadcom’s backing means that eventually everyone will be adopting 25GbE.

Likewise, one of my other impediments to adoption was the lack of server NICs to ramp hosts to 25GbE. Having fast access ports means nothing if the severs can’t take advantage of them. HPE addressed this with the release of FlexFabric networking adapters that can run 25GbE Ethernet. More importantly, those adapters (and switches) can run at 10GbE as well. This means that adoption of higher bandwidth is no longer an all-or-nothing proposition. You don’t have to abandon your existing investment to get to 25GbE right away. You don’t have to build a lab pod to test things and then sneak it into production. You can just buy a 5950 today and clock the ports down to 10GbE while you await the availability and purchasing cycle to buy 25GbE NICs. Then you can flip some switches in the next maintenance window and be running at 25GbE speeds. And you can leave some ports enabled at 10GbE to ensure that there is maximum backwards compatibility.

The Needs of the Few

Odds are good that 25GbE isn’t going to be right for you today. HPE is even telling people that 25GbE only really makes sense in a few deployment scenarios, among which are large container-based hosts running thousands of virtual apps, flash storage arrays that use Ethernet as a backplane, or specialized high-performance computing (HPC) tricks with RDMA and such. That means the odds are good that you won’t need 25GbE first thing tomorrow morning.

However, the need for 25GbE is going to be there. As applications grow more bandwidth hungry and data centers keep shrinking in footprint, the network hardware you do have left needs to work harder and faster to accomplish more with less. If the network really is destined to become a faceless underlay that serves as a utility for applications, it needs to run flat out fast to ensure that developers can’t start blaming their utility company for problems. Multi-core server architectures and flash storage have solved two of the three legs of this problem. 25GbE host connectivity and the 100GbE backbone connectivity tied to it, solve the other side of the equation so everything balances properly.

Don’t look at 25GbE as an immediate panacea for your problems. Instead, put it on a timeline with your other server needs and see what the adoption rate looks like going forward. If server NICs are bought in large quantities, that will drive manufactures to push the technology onto the server boards. If there is enough need for connectivity at these speeds the switch vendors will start larger adoption of Tomahawk chipsets. That cycle will push things forward much faster than the 10GbE / 40GbE marathon that’s been going on for the past six years.


Tom’s Take

I think HPE is taking a big leap with 25GbE. Until the Dell/EMC merger is completed they won’t find themselves in a position to adopt Tomahawk quickly in the Force10 line. That means the need to grab 25GbE server NICs won’t materialize if there’s nothing to connect them. Cisco won’t care either way so long as switches are purchased and all other networking vendors don’t sell servers. So that leaves HPE to either push this forward to fall off the edge of the cliff. Time will tell how this will all work out, but it would be nice to see HPE get a win here and make the network the least of application developer problems.

Disclaimer

I was a guest of Hewlett Packard Enterprise for HPE Discover 2016. They paid for my travel, hotel, and meals during the event. While I was briefed on the solution discussed here and many others, there was no expectation of coverage of the topics discussed. HPE did not ask for, nor were they guaranteed any consideration in the writing of this article. The conclusions and analysis contained herein are mine and mine alone.

I Can’t Drive 25G

Ethernet

The race to make things just a little bit faster in the networking world has heated up in recent weeks thanks to the formation of the 25Gig Ethernet Consortium.  Arista Networks, along with Mellanox, Google, Microsoft, and Broadcom, has decided that 40Gig Ethernet is too expensive for most data center applications.  Instead, they’re offering up an alternative in the 25Gig range.

This podcast with Greg Ferro (@EtherealMind) and Andrew Conry-Murray (@Interop_Andrew) does a great job of breaking down the technical details on the reasoning behind 25Gig Ethernet.  In short, the current 10Gig connection is made of four multiplexed 2.5Gig connections.  To get to 25Gig, all you need to do is over clock those connections a little.  That’s not unprecedented, as 40Gig Ethernet accomplishes this by over clocking them to 10Gig, albeit with different optics.  Aside from a technical merit badge, one has to ask themselves “Why?”

High Hopes

As always, money is the factor here.  The 25Gig Consortium is betting that you don’t like paying a lot of money for your 40Gig optics.  They want to offer an alternative that is faster than 10Gig but cheaper than the next standard step up.  By giving you a cheaper option for things like uplinks, you gain money to spend on things.  Probably on more switches, but that’s beside the point right now.

The other thing to keep in mind, as mentioned on the Coffee Break podcast, is that the cable runs for these 25Gig connectors will likely be much shorter.  Short term that won’t mean much.  There aren’t as many long-haul connections inside of a data center as one might thing.  A short hop to the top-of-rack (ToR) switch, then another different hop to the end-of-row (EoR) or core switch.  That’s really about it.  One of the arguments against 40/100Gig is that it was designed for carriers for long-haul purposes.  25G can give you 60% of the speed of that link at a much lower cost.  You aren’t paying for functionality you likely won’t use.

Heavy Metal

Is this a good move?  That depends.  There aren’t any 25Gig cards for servers right now, so the obvious use for these connectors will be uplinks.  Uplinks that can only be used by switches that share 25Gig (and later 50Gig) connections.  As of today, that means you’re using Arista, Dell, or Brocade.  And that’s when the optics and switches actually start shipping.  I assume that existing switching lines will be able to retrofit with firmware upgrades to support the links, but that’s anyone’s guess right now.

If Mellanox and Broadcom do eventually start shipping cards to upgrade existing server hardware to 25Gig then you’ll have to ask yourself if you want to pursue the upgrade costs to drive that little extra bit of speed out of the servers.  Are you pushing the 10Gig links in your servers today?  Are they the limiting factor in your data center?  And will upgrading your servers to support twice the bandwidth per network connection help alleviate your bottlenecks? Or will they just move to the uplinks on the switches?  It’s a quandary that you have to investigate.  And that takes time and effort.


 

Tom’s Take

The very first thing I ever tweeted (4 years ago):

We’ve come a long way from ratified standards to deployment of 40Gig and 100Gig.  Uplinks in crowded data centers are going to 40Gig.  I’ve seen a 100Gig optic in the wild running a research network.  It’s interesting to see that there is now a push to get to a marginally faster connection method with 25Gig.  It reminds me of all the competing 100Mbit standards back in the day.  Every standard was close but not quite the same.  I feel that 25Gig will get some adoption in the market.  So now we’ll have to choose from 10Gig, 40Gig, or something in between to connect servers and uplinks.  It will either get sent to the standards body for ratification or die on the vine with no adoption at all.  Time will tell.